Quantitative Risk Assessment for Multivariate Continuous Outcomes with Application to Neurotoxicology: The Bivariate Case
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
- Meredith M. Regan & Paul J. Catalano, 1999. "Likelihood Models for Clustered Binary and Continuous Out comes: Application to Developmental Toxicology," Biometrics, The International Biometric Society, vol. 55(3), pages 760-768, September.
- Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
- Zi‐Fan Yu & Paul J. Catzlano, 2008. "A Simulation Study of Quantitative Risk Assessment for Bivariate Continuous Outcomes," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1415-1430, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
- Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024.
"Testing Granger non-causality in expectiles,"
Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
- Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2022. "Testing Granger Non-Causality in Expectiles," Working Papers 202207, University of Liverpool, Department of Economics.
- Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2023. "Testing Granger Non-Causality in Expectiles," University of East Anglia School of Economics Working Paper Series 2023-02, School of Economics, University of East Anglia, Norwich, UK..
- Alois Pichler, 2024. "Higher order measures of risk and stochastic dominance," Papers 2402.15387, arXiv.org.
- Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
- Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
- Claudia Pacella, 2020. "Essays on Forecasting," ULB Institutional Repository 2013/307579, ULB -- Universite Libre de Bruxelles.
- H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022.
"GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series,"
Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
- Hibiki Kaibuchi & Yoshinori Kawasaki & Gilles Stupfler, 2021. "GARCH-UGH: A bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Papers 2104.09879, arXiv.org.
- repec:hum:wpaper:sfb649dp2017-027 is not listed on IDEAS
- Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
- Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
- Parente, Paulo M.D.C. & Smith, Richard J., 2011.
"Gel Methods For Nonsmooth Moment Indicators,"
Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
- Paulo Parente & Richard Smith, 2008. "GEL methods for non-smooth moment indicators," CeMMAP working papers CWP19/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014.
"Causality and predictability in distribution: The ethanol–food price relation revisited,"
Energy Economics, Elsevier, vol. 42(C), pages 152-160.
- Marzio GALEOTTI & Andrea BASTIANIN & Matteo MANERA, 2013. "Food versus Fuel: Causality and Predictability in Distribution," Departmental Working Papers 2013-10, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Food versus Fuel: Causality and Predictability in Distribution," Working Papers 2013.23, Fondazione Eni Enrico Mattei.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Food versus Fuel: Causality and Predictability in Distribution," Working Papers 241, University of Milano-Bicocca, Department of Economics, revised Mar 2013.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Food versus Fuel: Causality and Predictability in Distribution," IEFE Working Papers 56, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
- Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
- Machado, Jose A. F. & Silva, J. M. C. Santos, 2000. "Glejser's test revisited," Journal of Econometrics, Elsevier, vol. 97(1), pages 189-202, July.
- Akosah, Nana & Alagidede, Imhotep & Schaling, Eric, 2019. "Unfolding the monetary policy rule in Ghana: quantile-based evidence within time-frequency framework," MPRA Paper 103260, University Library of Munich, Germany, revised 01 Oct 2020.
- Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
- Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021.
"A unified framework for efficient estimation of general treatment models,"
Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2018. "A Unified Framework for Efficient Estimation of General Treatment Models," Papers 1808.04936, arXiv.org, revised Aug 2018.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," CeMMAP working papers CWP64/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ai, C. & Linton, O. & Motegi, K. & Zhang, Z., 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," Cambridge Working Papers in Economics 1934, Faculty of Economics, University of Cambridge.
- Marco Bottone & Lea Petrella & Mauro Bernardi, 2021.
"Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
- Marco Bottone & Mauro Bernardi & Lea Petrella, 2019. "Unified Bayesian Conditional Autoregressive Risk Measures using the Skew Exponential Power Distribution," Papers 1902.03982, arXiv.org, revised Sep 2019.
- G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:61:y:2005:i:3:p:757-766. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.