IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v68y2024i3p521-529.html
   My bibliography  Save this article

Using artificial intelligence for economic research: An agricultural odyssey

Author

Listed:
  • Andrew Leigh

Abstract

Generative artificial intelligence tools have been shown to substantially increase productivity in a range of different contexts. I discuss the potential and limitations of the current models, and the evidence on how economic researchers can best make use of generative artificial intelligence in their work. To illustrate these points, I show how the data analysis tools of ChatGPT can be used to address a specific question: the accuracy of agricultural forecasts—and discuss the strengths and weaknesses of artificial intelligence in data cleaning, data analysis and producing graphs and illustrations.

Suggested Citation

  • Andrew Leigh, 2024. "Using artificial intelligence for economic research: An agricultural odyssey," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 68(3), pages 521-529, July.
  • Handle: RePEc:bla:ajarec:v:68:y:2024:i:3:p:521-529
    DOI: 10.1111/1467-8489.12567
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-8489.12567
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-8489.12567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anton Korinek, 2023. "Generative AI for Economic Research: Use Cases and Implications for Economists," Journal of Economic Literature, American Economic Association, vol. 61(4), pages 1281-1317, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shumiao Ouyang & Hayong Yun & Xingjian Zheng, 2024. "How Ethical Should AI Be? How AI Alignment Shapes the Risk Preferences of LLMs," Papers 2406.01168, arXiv.org, revised Aug 2024.
    2. Marc Burri & Daniel Kaufmann & Nima Ostovan, 2024. "AI in economic research: A guide for students and instructors," IRENE Policy Reports 24-03, IRENE Institute of Economic Research.
    3. Asatryan, Zareh & Birkholz, Carlo & Heinemann, Friedrich, 2024. "Evidence-based policy or beauty contest? An LLM-based meta-analysis of EU cohesion policy evaluations," ZEW Discussion Papers 24-037, ZEW - Leibniz Centre for European Economic Research.
    4. Thiemo Fetzer & Peter John Lambert & Bennet Feld & Prashant Garg, 2024. "AI-Generated Production Networks: Measurement and Applications to Global Trade," ECONtribute Discussion Papers Series 346, University of Bonn and University of Cologne, Germany.
    5. Dong, Mengming Michael & Stratopoulos, Theophanis C. & Wang, Victor Xiaoqi, 2024. "A scoping review of ChatGPT research in accounting and finance," International Journal of Accounting Information Systems, Elsevier, vol. 55(C).
    6. Manish Jha & Jialin Qian & Michael Weber & Baozhong Yang, 2024. "Harnessing Generative AI for Economic Insights," Papers 2410.03897, arXiv.org, revised Oct 2024.
    7. Byeungchun Kwon & Taejin Park & Fernando Perez-Cruz & Phurichai Rungcharoenkitkul, 2024. "Large language models: a primer for economists," BIS Quarterly Review, Bank for International Settlements, December.
    8. Julian Junyan Wang & Victor Xiaoqi Wang, 2024. "Leveraging Large Language Models to Democratize Access to Costly Financial Datasets for Academic Research," Papers 2412.02065, arXiv.org.
    9. Hana Jomni & Nikita Zakharov, 2024. "Do Terrorist Attacks Polarize Politicians? Evidence from the European Parliamentary Speeches on Migration," Discussion Paper Series 50 JEL Classification: D7, Department of International Economic Policy, University of Freiburg, revised Nov 2024.
    10. Samuel Chang & Andrew Kennedy & Aaron Leonard & John List, 2024. "12 Best Practices for Leveraging Generative AI in Experimental Research," Artefactual Field Experiments 00796, The Field Experiments Website.
    11. Mourelatos, Evangelos & Zervas, Panagiotis & Lagios, Dimitris & Tzimas, Giannis, 2024. "Can AI Bridge the Gender Gap in Competitiveness?," GLO Discussion Paper Series 1404, Global Labor Organization (GLO).
    12. Michael Bauer & Daniel Huber & Eric Offner & Marlene Renkel & Ole Wilms & Michael D. Bauer, 2024. "Corporate Green Pledges," CESifo Working Paper Series 11507, CESifo.
    13. Wagner Marco, 2024. "Künstliche Intelligenz: ChatGPT bei EZB-Prognosen," Wirtschaftsdienst, Sciendo, vol. 104(9), pages 592-592.
    14. Vikram Krishnaveti & Saannidhya Rawat, 2024. "GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students," Papers 2409.10750, arXiv.org.
    15. Stefania Albanesi & Wabitsch Alena & António Dias da Silva & Juan F. Jimeno & Ana Lamo, 2024. "New Technologies and Jobs in Europe," Opportunity and Inclusive Growth Institute Working Papers 105, Federal Reserve Bank of Minneapolis.
    16. Rosa-García, Alfonso, 2024. "Student Reactions to AI-Replicant Professor in an Econ101 Teaching Video," MPRA Paper 120135, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:68:y:2024:i:3:p:521-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.