IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/r3qng.html
   My bibliography  Save this paper

A primer for the use of classifier and generative large language models in social science research

Author

Listed:
  • Cova, Joshua
  • Schmitz, Luuk

Abstract

The emergence of generative AI models is rapidly changing the social sciences. Much has now been written on the ethics and epistemological considerations of using these tools. Meanwhile, AI-powered research increasingly makes its way to preprint servers. However, we see a gap between ethics and practice: while many researchers would like to use these tools, few if any guides on how to do so exist. This paper fills this gap by providing users with a hands-on application written in accessible language. The paper deals with what we consider the most likely and advanced use case for AI in the social sciences: text annotation and classification. Our application guides readers through setting up a text classification pipeline and evaluating the results. The most important considerations concern reproducibility and transparency, open-source versus closed-source models, as well as the difference between classifier and generative models. The take-home message is this: these models provide unprecedented scale to augment research, but the community must take seriousely open-source and locally deployable models in the interest of open science principles. Our code to reproduce the example can be accessed via Github.

Suggested Citation

  • Cova, Joshua & Schmitz, Luuk, 2024. "A primer for the use of classifier and generative large language models in social science research," OSF Preprints r3qng, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:r3qng
    DOI: 10.31219/osf.io/r3qng
    as

    Download full text from publisher

    File URL: https://osf.io/download/6764b5f734e328c181af0fed/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/r3qng?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:r3qng. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.