IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v62y2018i2p185-198.html
   My bibliography  Save this article

On the use of flexible mixing distributions in WTP space: an induced value choice experiment

Author

Listed:
  • Claudia Bazzani
  • Marco A. Palma
  • Rodolfo M. Nayga

Abstract

In this study, we use data from an induced value choice experiment to compare estimates from mixed logit models in willingness to pay (WTP) space using different parameter distributional assumptions. Specifically, we test differences in WTP estimates when using flexible parameter mixing distributions (i.e. Legendre polynomials, step functions and splines) and conventional parameter distributions (normal and lognormal). Similar WTP estimates are obtained. However, we observe that WTP estimates are statistically different from the induced value when conventional distributions are assumed, but they are not when more flexible distributions are assumed. This suggests that flexible distributions can provide more reliable WTP estimates.

Suggested Citation

  • Claudia Bazzani & Marco A. Palma & Rodolfo M. Nayga, 2018. "On the use of flexible mixing distributions in WTP space: an induced value choice experiment," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(2), pages 185-198, April.
  • Handle: RePEc:bla:ajarec:v:62:y:2018:i:2:p:185-198
    DOI: 10.1111/1467-8489.12246
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-8489.12246
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-8489.12246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
    2. Collins, Jill P. & Vossler, Christian A., 2009. "Incentive compatibility tests of choice experiment value elicitation questions," Journal of Environmental Economics and Management, Elsevier, vol. 58(2), pages 226-235, September.
    3. Claudia Bazzani & Vincenzina Caputo & Rodolfo M. Nayga JR. & Maurizio Canavari, 2017. "Testing Commitment Cost Theory In Choice Experiments," Economic Inquiry, Western Economic Association International, vol. 55(1), pages 383-396, January.
    4. Fabian Bastin & Cinzia Cirillo & Philippe L. Toint, 2010. "Estimating Nonparametric Random Utility Models with an Application to the Value of Time in Heterogeneous Populations," Transportation Science, INFORMS, vol. 44(4), pages 537-549, November.
    5. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    6. Riccardo Scarpa & Mara Thiene & Francesco Marangon, 2008. "Using Flexible Taste Distributions to Value Collective Reputation for Environmentally Friendly Production Methods," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 56(2), pages 145-162, June.
    7. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2008. "A Bayesian mixed logit-probit model for multinomial choice," Journal of Econometrics, Elsevier, vol. 147(2), pages 232-246, December.
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    9. Arne Hole & Julie Kolstad, 2012. "Mixed logit estimation of willingness to pay distributions: a comparison of models in preference and WTP space using data from a health-related choice experiment," Empirical Economics, Springer, vol. 42(2), pages 445-469, April.
    10. Azucena Gracia & Maria L. Loureiro & Rodolfo M. Nayga, 2011. "Are Valuations from Nonhypothetical Choice Experiments Different from Those of Experimental Auctions?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(5), pages 1358-1373.
    11. Faical Akaichi & Rodolfo M. Nayga & José M. Gil, 2013. "Are Results from Non-hypothetical Choice-based Conjoint Analyses and Non-hypothetical Recoded-ranking Conjoint Analyses Similar?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(4), pages 949-963.
    12. Jeremy T. Fox & Kyoo il Kim & Stephen P. Ryan & Patrick Bajari, 2011. "A simple estimator for the distribution of random coefficients," Quantitative Economics, Econometric Society, vol. 2(3), pages 381-418, November.
    13. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2017. "A Monte Carlo Evaluation of the Logit-Mixed Logit under Asymmetry and Multimodality," Working Papers in Economics 17/23, University of Waikato.
    14. Luchini, S. & Watson, V., 2014. "Are choice experiments reliable? Evidence from the lab," Economics Letters, Elsevier, vol. 124(1), pages 9-13.
    15. Mogens Fosgerau, 2024. "Nonparametric approaches to describing heterogeneity," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 11, pages 308-318, Edward Elgar Publishing.
    16. Patrick Bajari & Jeremy T. Fox & Stephen P. Ryan, 2007. "Linear Regression Estimation of Discrete Choice Models with Nonparametric Distributions of Random Coefficients," American Economic Review, American Economic Association, vol. 97(2), pages 459-463, May.
    17. Vincenzina Caputo & Riccardo Scarpa & Rodolfo M. Nayga, 2017. "Cue versus independent food attributes: the effect of adding attributes in choice experiments," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(2), pages 211-230.
    18. Fosgerau, Mogens & Mabit, Stefan L., 2013. "Easy and flexible mixture distributions," Economics Letters, Elsevier, vol. 120(2), pages 206-210.
    19. Andrew Daly & Stephane Hess & Kenneth Train, 2012. "Assuring finite moments for willingness to pay in random coefficient models," Transportation, Springer, vol. 39(1), pages 19-31, January.
    20. Carson, Richard T. & Czajkowski, Mikołaj, 2019. "A new baseline model for estimating willingness to pay from discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 57-61.
    21. Garrett Sonnier & Andrew Ainslie & Thomas Otter, 2007. "Heterogeneity distributions of willingness-to-pay in choice models," Quantitative Marketing and Economics (QME), Springer, vol. 5(3), pages 313-331, September.
    22. Balcombe, Kelvin & Chalak, Ali & Fraser, Iain, 2009. "Model selection for the mixed logit with Bayesian estimation," Journal of Environmental Economics and Management, Elsevier, vol. 57(2), pages 226-237, March.
    23. Riccardo Scarpa & Mara Thiene & Kenneth Train, 2008. "Utility in Willingness to Pay Space: A Tool to Address Confounding Random Scale Effects in Destination Choice to the Alps," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 994-1010.
    24. Fosgerau, Mogens & Hess, Stephane, 2009. "A comparison of methods for representing random taste heterogeneity in discrete choice models," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 42, pages 1-25.
    25. Dan Rigby & Mike Burton, 2006. "Modeling Disinterest and Dislike: A Bounded Bayesian Mixed Logit Model of the UK Market for GM Food," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 485-509, April.
    26. Tiziana de-Magistris & Azucena Gracia & Rodolfo M. Nayga, 2013. "On the Use of Honesty Priming Tasks to Mitigate Hypothetical Bias in Choice Experiments," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1136-1154.
    27. Smith, Vernon L, 1976. "Experimental Economics: Induced Value Theory," American Economic Review, American Economic Association, vol. 66(2), pages 274-279, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lang, Ghislaine & Farsi, Mehdi & Lanz, Bruno & Weber, Sylvain, 2021. "Energy efficiency and heating technology investments: Manipulating financial information in a discrete choice experiment," Resource and Energy Economics, Elsevier, vol. 64(C).
    2. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2021. "Logit Mixed Logit Under Asymmetry and Multimodality of WTP: A Monte Carlo Evaluation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 643-662, March.
    3. Pellegrini, Andrea & Lombardi, Ginevra Virginia & Scarpa, Riccardo & Rose, John M., 2024. "A nonparametric random effects model for the valuation of forest recreation services: An application to forest sites in Tuscany, Italy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 68(02), January.
    4. Marco A. Palma & Myriah D. Johnson & David P. Anderson, 2019. "The effects of experience versus description of attributes on willingness‐to‐pay for beefsteaks," Agricultural Economics, International Association of Agricultural Economists, vol. 50(2), pages 129-137, March.
    5. Pulkit Marwah & Yu Yvette Zhang & Mengmeng Gu, 2022. "Impacts of Crapemyrtle Bark Scale on Consumers and the Horticulture Industry," Sustainability, MDPI, vol. 14(3), pages 1-11, February.
    6. Caputo, Vincenzina & Scarpa, Riccardo & Nayga, Rodolfo M. & Ortega, David L., 2018. "Are preferences for food quality attributes really normally distributed? An analysis using flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 28(C), pages 10-27.
    7. Fraser, Iain & Balcombe, Kelvin & Williams, Louis & McSorley, Eugene, 2021. "Preference stability in discrete choice experiments. Some evidence using eye-tracking," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    8. J. Ross Pruitt & Kaitlyn M. Melton & Marco A. Palma, 2021. "Does Physical Activity Influence Consumer Acceptance of Gene Edited Food?," Sustainability, MDPI, vol. 13(14), pages 1-12, July.
    9. Sergio Colombo & Wiktor Budziński & Mikołaj Czajkowski & Klaus Glenk, 2022. "The relative performance of ex‐ante and ex‐post measures to mitigate hypothetical and strategic bias in a stated preference study," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(3), pages 845-873, September.
    10. I. G. Ukpong & K. G. Balcombe & I. M. Fraser & F. J. Areal, 2019. "Preferences for Mitigation of the Negative Impacts of the Oil and Gas Industry in the Niger Delta Region of Nigeria," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 811-843, October.
    11. Bansal, Prateek & Hurtubia, Ricardo & Tirachini, Alejandro & Daziano, Ricardo A., 2019. "Flexible estimates of heterogeneity in crowding valuation in the New York City subway," Journal of choice modelling, Elsevier, vol. 31(C), pages 124-140.
    12. Sergio Colombo & Wiktor Budziński & Mikołaj Czajkowski & Klaus Glenk, 2020. "Ex-ante and ex-post measures to mitigate hypothetical bias. Are they alternative or complementary tools to increase the reliability and validity of DCE estimates?," Working Papers 2020-20, Faculty of Economic Sciences, University of Warsaw.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caputo, Vincenzina & Scarpa, Riccardo & Nayga, Rodolfo M. & Ortega, David L., 2018. "Are preferences for food quality attributes really normally distributed? An analysis using flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 28(C), pages 10-27.
    2. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2017. "A Monte Carlo Evaluation of the Logit-Mixed Logit under Asymmetry and Multimodality," Working Papers in Economics 17/23, University of Waikato.
    3. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Comparison of parametric and semiparametric representations of unobserved preference heterogeneity in logit models," Journal of choice modelling, Elsevier, vol. 27(C), pages 97-113.
    4. Valerie Kilders & Vincenzina Caputo, 2021. "Is Animal Welfare Promoting Hornless Cattle? Assessing Consumer’s Valuation for Milk from Gene‐edited Cows under Different Information Regimes," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 735-759, September.
    5. Mohammed H. Alemu & Søren B. Olsen, 2017. "Can a Repeated Opt-Out Reminder remove hypothetical bias in discrete choice experiments? An application to consumer valuation of novel food products," IFRO Working Paper 2017/05, University of Copenhagen, Department of Food and Resource Economics.
    6. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    7. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    8. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    9. Rico Krueger & Taha H. Rashidi & Akshay Vij, 2019. "Semi-Parametric Hierarchical Bayes Estimates of New Yorkers' Willingness to Pay for Features of Shared Automated Vehicle Services," Papers 1907.09639, arXiv.org.
    10. Train, Kenneth, 2016. "Mixed logit with a flexible mixing distribution," Journal of choice modelling, Elsevier, vol. 19(C), pages 40-53.
    11. Doherty, Edel & Campbell, Danny & Hynes, Stephen, 2012. "Exploring cost heterogeneity in recreational demand," Working Papers 148832, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    12. Mohammed Hussen Alemu & Søren Bøye Olsen, 2020. "An analysis of the impacts of tasting experience and peer effects on consumers’ willingness to pay for novel foods," Agribusiness, John Wiley & Sons, Ltd., vol. 36(4), pages 653-674, October.
    13. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    14. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    15. Bansal, Prateek & Hurtubia, Ricardo & Tirachini, Alejandro & Daziano, Ricardo A., 2019. "Flexible estimates of heterogeneity in crowding valuation in the New York City subway," Journal of choice modelling, Elsevier, vol. 31(C), pages 124-140.
    16. Bazzani, Claudia & Nayga, Rodolfo M. Jr. & Caputo, Vincenzina & Canavari, Maurizio & Danforth, Diana M., 2016. "On the Use of the BDM Mechanism in Non-Hypothetical Choice Experiments," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235904, Agricultural and Applied Economics Association.
    17. Yuan, Yuan & You, Wen & Boyle, Kevin J., 2015. "A guide to heterogeneity features captured by parametric and nonparametric mixing distributions for the mixed logit model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205733, Agricultural and Applied Economics Association.
    18. Claudia Bazzani & Vincenzina Caputo & Rodolfo M. Nayga JR. & Maurizio Canavari, 2017. "Testing Commitment Cost Theory In Choice Experiments," Economic Inquiry, Western Economic Association International, vol. 55(1), pages 383-396, January.
    19. Edel Doherty & Danny Campbell & Stephen Hynes, 2013. "Models of Site-choice for Walks in Rural Ireland: Exploring Cost Heterogeneity," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(2), pages 446-466, June.
    20. Chavez, Daniel E. & Palma, Marco A. & Nayga, Rodolfo M. & Mjelde, James W., 2020. "Product availability in discrete choice experiments with private goods," Journal of choice modelling, Elsevier, vol. 36(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:62:y:2018:i:2:p:185-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.