IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/23-08.html
   My bibliography  Save this paper

A Bayesian mixed logit-probit model for multinomial choice

Author

Listed:
  • Martin Burda

    (Institute for Fiscal Studies)

  • Matthew C. Harding

    (Institute for Fiscal Studies and Stanford University)

  • Jerry Hausman

    (Institute for Fiscal Studies and MIT)

Abstract

In this paper we introduce a new flexible mixed model for multinomial discrete choice where the key individual- and alternative-specific parameters of interest are allowed to follow an assumption-free nonparametric density specification while other alternative-specific coefficients are assumed to be drawn from a multivariate normal distribution which eliminates the independence of irrelevant alternatives assumption at the individual level. A hierarchical specification of our model allows us to break down a complex data structure into a set of submodels with the desired features that are naturally assembled in the original system. We estimate the model using a Bayesian Markov Chain Monte Carlo technique with a multivariate Dirichlet Process (DP) prior on the coefficients with nonparametrically estimated density. We employ a "latent class" sampling algorithm which is applicable to a general class of models including non-conjugate DP base priors. The model is applied to supermarket choices of a panel of Houston households whose shopping behavior was observed over a 24-month period in years 2004-2005. We estimate the nonparametric density of two key variables of interest: the price of a basket of goods based on scanner data, and driving distance to the supermarket based on their respective locations. Our semi-parametric approach allows us to identify a complex multi-modal preference distribution which distinguishes between inframarginal consumers and consumers who strongly value either lower prices or shopping convenience.

Suggested Citation

  • Martin Burda & Matthew C. Harding & Jerry Hausman, 2008. "A Bayesian mixed logit-probit model for multinomial choice," CeMMAP working papers CWP23/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:23/08
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp2308.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    2. Peter J. Green & Sylvia Richardson, 2001. "Modelling Heterogeneity With and Without the Dirichlet Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 355-375, June.
    3. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    4. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
    5. Keisuke Hirano, 2002. "Semiparametric Bayesian Inference in Autoregressive Panel Data Models," Econometrica, Econometric Society, vol. 70(2), pages 781-799, March.
    6. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    7. Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
    8. Chib, Siddhartha & Hamilton, Barton H., 2002. "Semiparametric Bayes analysis of longitudinal data treatment models," Journal of Econometrics, Elsevier, vol. 110(1), pages 67-89, September.
    9. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    10. Austan Goolsbee & Amil Petrin, 2004. "The Consumer Gains from Direct Broadcast Satellites and the Competition with Cable TV," Econometrica, Econometric Society, vol. 72(2), pages 351-381, March.
    11. Dunson, David B., 2005. "Bayesian Semiparametric Isotonic Regression for Count Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 618-627, June.
    12. Markus Jochmann & Roberto León‐González, 2004. "Estimating the demand for health care with panel data: a semiparametric Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 1003-1014, October.
    13. Matthew C. Harding & Jerry Hausman, 2007. "Using A Laplace Approximation To Estimate The Random Coefficients Logit Model By Nonlinear Least Squares," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1311-1328, November.
    14. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    15. Athanasios Kottas & Márcia D. Branco & Alan E. Gelfand, 2002. "A Nonparametric Bayesian Modeling Approach for Cytogenetic Dosimetry," Biometrics, The International Biometric Society, vol. 58(3), pages 593-600, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    2. Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
    3. Burda, Martin & Prokhorov, Artem, 2014. "Copula based factorization in Bayesian multivariate infinite mixture models," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 200-213.
    4. Cem Çakmakli, 2012. "Bayesian Semiparametric Dynamic Nelson-Siegel Model," Working Paper series 59_12, Rimini Centre for Economic Analysis, revised Sep 2012.
    5. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    6. Abel Rodr�guez & Enrique ter Horst, 2011. "Measuring expectations in options markets: an application to the S&P500 index," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1393-1405, July.
    7. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    8. Fisher, Mark & Jensen, Mark J., 2022. "Bayesian nonparametric learning of how skill is distributed across the mutual fund industry," Journal of Econometrics, Elsevier, vol. 230(1), pages 131-153.
    9. Federico Bassetti & Roberto Casarin & Marco Del Negro, 2022. "A Bayesian Approach to Inference on Probabilistic Surveys," Staff Reports 1025, Federal Reserve Bank of New York.
    10. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    11. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    12. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    13. Fisher, Mark & Jensen, Mark J., 2019. "Bayesian inference and prediction of a multiple-change-point panel model with nonparametric priors," Journal of Econometrics, Elsevier, vol. 210(1), pages 187-202.
    14. Matthew C. Harding & Jerry Hausman, 2007. "Using A Laplace Approximation To Estimate The Random Coefficients Logit Model By Nonlinear Least Squares," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1311-1328, November.
    15. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    16. Zarepour, Mahmoud & Labadi, Luai Al, 2012. "On a rapid simulation of the Dirichlet process," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 916-924.
    17. Mark J. Jensen & John M. Maheu, 2018. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," JRFM, MDPI, vol. 11(3), pages 1-29, September.
    18. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82(5), pages 1749-1797, September.
    19. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    20. Kim, Hyunchul & Kim, Kyoo il, 2017. "Estimating store choices with endogenous shopping bundles and price uncertainty," International Journal of Industrial Organization, Elsevier, vol. 54(C), pages 1-36.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:23/08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.