IDEAS home Printed from https://ideas.repec.org/a/bcp/journl/v7y2023i12p1813-1825.html
   My bibliography  Save this article

Validating the Instrument, Egunjobi’s Child Response Style Scale (CReSS)

Author

Listed:
  • Antoinette Nneka Opara

    (Psycho-Spiritual Institute of Lux Terra Leadership Foundation, Marist International University College, a constituent College of the Catholic University of Eastern Africa, Nairobi, Kenya)

  • Joyzy Pius Egunjobi

    (Psycho-Spiritual Institute of Lux Terra Leadership Foundation, Marist International University College, a constituent College of the Catholic University of Eastern Africa, Nairobi, Kenya)

Abstract

To test the reliability and validity of the Child Response Style Scale (CReSS) measuring responses to parenting, a cross-sectional online survey (20 items) was distributed via online networks: WhatsApp, email, Facebook to infinite population in Nigeria, Kenya and Ghana. Validity and reliability were tested. The internal consistency for items and the entire scale, and other measures of reliability were tested. Also, the construct validity and the criterion-referenced validity were also measured. The construct validity, criterion-referenced validity, internal consistency reliability, and split-half reliability showed good results. The CReSS achieved a correlation between Forms = .666; Spearman-Brown Coefficient rSB = .799; Guttman Split-Half Coefficient rsb = .798; Cronbach’ Alpha α = .840. CReSS is valid and reliable.

Suggested Citation

  • Antoinette Nneka Opara & Joyzy Pius Egunjobi, 2023. "Validating the Instrument, Egunjobi’s Child Response Style Scale (CReSS)," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(12), pages 1813-1825, December.
  • Handle: RePEc:bcp:journl:v:7:y:2023:i:12:p:1813-1825
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijriss/Digital-Library/volume-7-issue-12/1813-1825.pdf
    Download Restriction: no

    File URL: https://www.rsisinternational.org/journals/ijriss/articles/validating-the-instrument-egunjobis-child-response-style-scale-cress/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    2. J. Zhu & J. C. Eickhoff & P. Yan, 2005. "Generalized Linear Latent Variable Models for Repeated Measures of Spatially Correlated Multivariate Data," Biometrics, The International Biometric Society, vol. 61(3), pages 674-683, September.
    3. Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
    4. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    5. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    6. David B. Dunson & Sally D. Perreault, 2001. "Factor Analytic Models of Clustered Multivariate Data with Informative Censoring," Biometrics, The International Biometric Society, vol. 57(1), pages 302-308, March.
    7. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    8. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    9. Zheng-Yun Zhuang & Chi-Kit Ho & Paul Juinn Bing Tan & Jia-Ming Ying & Jin-Hua Chen, 2020. "The Optimal Setting of A/B Exam Papers without Item Pools: A Hybrid Approach of IRT and BGP," Mathematics, MDPI, vol. 8(8), pages 1-29, August.
    10. Tsonaka, R. & Moustaki, I., 2007. "Parameter constraints in generalized linear latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4164-4177, May.
    11. Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
    12. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    13. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    14. Isabella Sulis & Mariano Porcu, 2012. "Comparing degree programs from students’ assessments: A LCRA-based adjusted composite indicator," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 193-209, June.
    15. Matthias von Davier, 2021. "Commentary: Matching IRT Models to PRO Constructs— Modeling Alternatives, and Some Thoughts on What Makes a Model Different," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 825-832, September.
    16. Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
    17. Minjeong Jeon & Paul Boeck & Jevan Luo & Xiangrui Li & Zhong-Lin Lu, 2021. "Modeling Within-Item Dependencies in Parallel Data on Test Responses and Brain Activation," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 239-271, March.
    18. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    19. David B. Dunson & M. Watson & Jack A. Taylor, 2003. "Bayesian Latent Variable Models for Median Regression on Multiple Outcomes," Biometrics, The International Biometric Society, vol. 59(2), pages 296-304, June.
    20. Michel Wedel & Wagner Kamakura, 2001. "Factor analysis with (mixed) observed and latent variables in the exponential family," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 515-530, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcp:journl:v:7:y:2023:i:12:p:1813-1825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Pawan Verma (email available below). General contact details of provider: https://rsisinternational.org/journals/ijriss/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.