A factor mixture model for analyzing heterogeneity and cognitive structure of dementia
Author
Abstract
Suggested Citation
DOI: 10.1007/s10182-012-0206-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yiu-Fai Yung, 1997. "Finite mixtures in confirmatory factor-analysis models," Psychometrika, Springer;The Psychometric Society, vol. 62(3), pages 297-330, September.
- William Meredith, 1993. "Measurement invariance, factor analysis and factorial invariance," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 525-543, December.
- Vermunt, Jeroen K. & Magidson, Jay, 2003. "Latent class models for classification," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 531-537, January.
- F. Thomas Juster & Richard Suzman, 1995. "An Overview of the Health and Retirement Study," Journal of Human Resources, University of Wisconsin Press, vol. 30, pages 7-56.
- Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
- Bengt Muthén & Kerby Shedden, 1999. "Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm," Biometrics, The International Biometric Society, vol. 55(2), pages 463-469, June.
- Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Robin Fuchs & Denys Pommeret & Cinzia Viroli, 2022. "Mixed Deep Gaussian Mixture Model: a clustering model for mixed datasets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 31-53, March.
- Silvia Cagnone & Cinzia Viroli, 2018. "Multivariate latent variable transition models of longitudinal mixed data: an analysis on alcohol use disorder," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1399-1418, November.
- Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
- Silvia Cagnone & Cinzia Viroli, 2018. "Multivariate latent variable transition models of longitudinal mixed data: an analysis on alcohol use disorder," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1399-1418, November.
- Anindita Chakravarty & Rajdeep Grewal & V. Sambamurthy, 2013. "Information Technology Competencies, Organizational Agility, and Firm Performance: Enabling and Facilitating Roles," Information Systems Research, INFORMS, vol. 24(4), pages 976-997, December.
- Shelley H. Liu & Yitong Chen & Jordan R. Kuiper & Emily Ho & Jessie P. Buckley & Leah Feuerstahler, 2024. "Applying Latent Variable Models to Estimate Cumulative Exposure Burden to Chemical Mixtures and Identify Latent Exposure Subgroups: A Critical Review and Future Directions," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 482-502, July.
- Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
- Zhou, Xingcai & Liu, Xinsheng, 2008. "The EM algorithm for the extended finite mixture of the factor analyzers model," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3939-3953, April.
- Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
- Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
- Dirk Temme & Lutz Hildebrandt, 2009. "Gruppenvergleiche bei hypothetischen Konstrukten — Die Prüfung der Übereinstimmung von Messmodellen mit der Strukturgleichungsmethodik," Schmalenbach Journal of Business Research, Springer, vol. 61(2), pages 138-185, March.
- Bianconcini, Silvia & Cagnone, Silvia, 2012. "Estimation of generalized linear latent variable models via fully exponential Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 183-193.
- Casey Codd & Robert Cudeck, 2014. "Nonlinear Random-Effects Mixture Models for Repeated Measures," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 60-83, January.
- Fokoué, Ernest, 2005. "Mixtures of factor analyzers: an extension with covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 370-384, August.
- Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
- Rashmita Basu, 2013. "Willingness-to-pay to prevent Alzheimer’s disease: a contingent valuation approach," International Journal of Health Economics and Management, Springer, vol. 13(3), pages 233-245, December.
- Johan Oud & Manuel Voelkle, 2014. "Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3271-3288, November.
- Karsten Hank & Hendrik Jürges & Jürgen Schupp & Gert G. Wagner, 2006.
"Die Messung der Greifkraft als objektives Gesundheitsmaß in sozialwissenschaftlichen Bevölkerungsumfragen: erhebungsmethodische und inhaltliche Befunde auf der Basis von SHARE und SOEP,"
Discussion Papers of DIW Berlin
577, DIW Berlin, German Institute for Economic Research.
- Hank, Karsten & Jürges, Hendrik & Schupp, Jürgen & Wagner, Gert G., 2006. "Die Messung der Greifkraft als objektives Gesundheitsmaß in sozialwissenschaftlichen Bevölkerungsumfragen: Erhebungsmethodische und inhaltliche Befunde auf der Basis von SHARE und SOEP," Discussion Papers 2006/6, Technische Universität Berlin, School of Economics and Management.
- Liat Ayalon, 2018. "Perceived Age Discrimination: A Precipitator or a Consequence of Depressive Symptoms?," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 73(5), pages 860-869.
- Elder, Harold W. & Rudolph, Patricia M., 2000. "Beliefs and actions: expectations and savings decisions by older Americans," Financial Services Review, Elsevier, vol. 9(1), pages 33-45, 00.
- Steven Andrew Culpepper & Herman Aguinis & Justin L. Kern & Roger Millsap, 2019. "High-Stakes Testing Case Study: A Latent Variable Approach for Assessing Measurement and Prediction Invariance," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 285-309, March.
- Ihsana Sabriani Borualogo & Ferran Casas, 2023. "Bullying Victimisation and Children’s Subjective Well-being: A Comparative Study in Seven Asian Countries," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 16(1), pages 1-27, February.
More about this item
Keywords
Categorical and ordinal data; Cognitive functioning ; Latent variables; Mixture models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:98:y:2014:i:1:p:1-20. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.