IDEAS home Printed from https://ideas.repec.org/a/aiy/jnjaer/v20y2021i3p582-612.html
   My bibliography  Save this article

An Economic Alternative to Replacing Centralized Gas Supply with Autonomous Biogas Facilities in Russian Cities

Author

Listed:
  • G.S. Chebotareva
  • A.A. Dvinayninov

Abstract

The main trend in energy development is to increase energy efficiency by reducing the use of limited natural resources, the spread of renewable energy, and reducing the negative impact on the environment. An effective response to these challenges is the use of biogas plants that produce clean energy and solve the environmental problems of waste disposal and recycling. The purpose of the article is to assess the economic efficiency of replacing district gas supply with autonomous biogas plants in public utilities. A hypothesis has been put forward that the feasibility of using such technologies depends on climatic features and the specific provisions of state regulation of prices and gas consumption rates. A cost approach was applied that assesses the overall structure of equipment costs, as well as a comparative assessment method according to the principle “with / without a biogas plant”, and a scenario analysis, the criterion of which is the size of the family owning the plant. An auxiliary method for forecasting retail and economically justified prices for natural gas for the population was used. The object of calculations is the “HomeBiogas” installation intended for home use. Three Russian cities were chosen as territorial subjects: Yekaterinburg, Irkutsk and Krasnodar. The cities which differ significantly in their natural characteristics and approaches to the formation of retail gas prices. It has been proved that although the average monthly temperatures differ significantly in the cities considered, none of them has a constant temperature exceeding the required standard value of 17°C. In each case, the initial capital investment is driven up by the cost of installing additional insulation and heating systems. This equalizes the costs of warmer and colder areas. Therefore, the climatic features of cities are not significant and do not affect the economic efficiency of using a biogas plant. In turn, state regulation of prices and norms of gas consumption by the population is of decisive importance. The findings are of theoretical and practical importance. The methodology can be applied to assess the efficiency of using biogas plants in industry and gasification projects in the remote areas of Russia.

Suggested Citation

  • G.S. Chebotareva & A.A. Dvinayninov, 2021. "An Economic Alternative to Replacing Centralized Gas Supply with Autonomous Biogas Facilities in Russian Cities," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 20(3), pages 582-612.
  • Handle: RePEc:aiy:jnjaer:v:20:y:2021:i:3:p:582-612
    DOI: http://dx.doi.org/10.15826/vestnik.2021.20.3.023
    as

    Download full text from publisher

    File URL: https://journalaer.ru//fileadmin/user_upload/site_15934/2021/09_CHebotareva_Dvinjaninov.pdf
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.15826/vestnik.2021.20.3.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    2. Caglayan, Dilara Gulcin & Ryberg, David Severin & Heinrichs, Heidi & Linßen, Jochen & Stolten, Detlef & Robinius, Martin, 2019. "The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe," Applied Energy, Elsevier, vol. 255(C).
    3. Zhu, K. & Victoria, M. & Andresen, G.B. & Greiner, M., 2020. "Impact of climatic, technical and economic uncertainties on the optimal design of a coupled fossil-free electricity, heating and cooling system in Europe," Applied Energy, Elsevier, vol. 262(C).
    4. Domenico Raucci & Stefano Agostinone & Martina Carnevale, 2019. "Technical and economic evaluation of renewable energy production in the Italian agricultural firm: financing a biogas plant investment," World Review of Entrepreneurship, Management and Sustainable Development, Inderscience Enterprises Ltd, vol. 15(4), pages 513-538.
    5. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    6. Yin, Yongjun & Chen, Shaoxu & Li, Xusheng & Jiang, Bo & Zhao, Joe RuHe & Nong, Guangzai, 2021. "Comparative analysis of different CHP systems using biogas for the cassava starch plants," Energy, Elsevier, vol. 232(C).
    7. Karhinen, S. & Huuki, H., 2019. "Private and social benefits of a pumped hydro energy storage with increasing amount of wind power," Energy Economics, Elsevier, vol. 81(C), pages 942-959.
    8. Laura Dardot Campello & Regina Mambeli Barros & Geraldo Lúcio Tiago Filho & Ivan Felipe Silva Santos, 2021. "Analysis of the economic viability of the use of biogas produced in wastewater treatment plants to generate electrical energy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2614-2629, February.
    9. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    10. Gulmira KEZEMBAYEVA, 2018. "Development of Methods for Calculating the Environmental and Economic Efficiency of Waste Treatment Technologies," Journal of Advanced Research in Management, ASERS Publishing, vol. 9(7), pages 1624-1630.
    11. Mazlan, M. & Najafi, G. & Hoseini, S.S. & Mamat, R. & Alenzi, Raslan A. & Mofijur, M. & Yusaf, T., 2021. "Thermal efficiency analysis of a nanofluid-based micro combined heat and power system using CNG and biogas," Energy, Elsevier, vol. 231(C).
    12. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    13. Diemuodeke, E.O. & Addo, A. & Oko, C.O.C. & Mulugetta, Y. & Ojapah, M.M., 2019. "Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm," Renewable Energy, Elsevier, vol. 134(C), pages 461-477.
    14. repec:srs:journl:jemt:v:9:y:2018:i:7:p:1624-1630 is not listed on IDEAS
    15. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    16. Jacek Brożyna & Grzegorz Mentel & Eva Ivanová & Gennadii Sorokin, 2019. "Classification of Renewable Sources of Electricity in the Context of Sustainable Development of the New EU Member States," Energies, MDPI, vol. 12(12), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    2. Pedersen, Tim T. & Victoria, Marta & Rasmussen, Morten G. & Andresen, Gorm B., 2021. "Modeling all alternative solutions for highly renewable energy systems," Energy, Elsevier, vol. 234(C).
    3. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    4. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    5. Kan, Xiaoming & Reichenberg, Lina & Hedenus, Fredrik, 2021. "The impacts of the electricity demand pattern on electricity system cost and the electricity supply mix: A comprehensive modeling analysis for Europe," Energy, Elsevier, vol. 235(C).
    6. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    7. Stanisław Jaworski & Mariola Chrzanowska & Monika Zielińska-Sitkiewicz & Robert Pietrzykowski & Aleksandra Jezierska-Thöle & Piotr Zielonka, 2023. "Evaluating the Progress of Renewable Energy Sources in Poland: A Multidimensional Analysis," Energies, MDPI, vol. 16(18), pages 1-21, September.
    8. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    9. He, Kun & Zhu, Hongliang & Wang, Li, 2015. "A new coal gas utilization mode in China’s steel industry and its effect on power grid balancing and emission reduction," Applied Energy, Elsevier, vol. 154(C), pages 644-650.
    10. Misbaudeen Aderemi Adesanya & Wook-Ho Na & Anis Rabiu & Qazeem Opeyemi Ogunlowo & Timothy Denen Akpenpuun & Adnan Rasheed & Yong-Cheol Yoon & Hyun-Woo Lee, 2022. "TRNSYS Simulation and Experimental Validation of Internal Temperature and Heating Demand in a Glass Greenhouse," Sustainability, MDPI, vol. 14(14), pages 1-30, July.
    11. Margeta, Jure & Glasnovic, Zvonimir, 2011. "Exploitation of temporary water flow by hybrid PV-hydroelectric plant," Renewable Energy, Elsevier, vol. 36(8), pages 2268-2277.
    12. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
    14. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    15. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    16. Yimy E. García-Vera & Rodolfo Dufo-López & José L. Bernal-Agustín, 2020. "Techno-Economic Feasibility Analysis through Optimization Strategies and Load Shifting in Isolated Hybrid Microgrids with Renewable Energy for the Non-Interconnected Zone (NIZ) of Colombia," Energies, MDPI, vol. 13(22), pages 1-20, November.
    17. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    18. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    19. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    20. Shirizadeh, Behrang & Quirion, Philippe, 2022. "Do multi-sector energy system optimization models need hourly temporal resolution? A case study with an investment and dispatch model applied to France," Applied Energy, Elsevier, vol. 305(C).

    More about this item

    Keywords

    biogas; biogas facility; centralized gas supply; feasibility; economic effect; natural features; gas price; cost-based approach; comparative assessment; cities; Russia.;
    All these keywords.

    JEL classification:

    • O22 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Project Analysis
    • Q35 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Hydrocarbon Resources
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiy:jnjaer:v:20:y:2021:i:3:p:582-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalia Starodubets (email available below). General contact details of provider: https://edirc.repec.org/data/seurfru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.