IDEAS home Printed from https://ideas.repec.org/r/yor/hectdg/17-22.html
   My bibliography  Save this item

On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2020. "Ill-posed estimation in high-dimensional models with instrumental variables," Journal of Econometrics, Elsevier, vol. 219(1), pages 171-200.
  2. Caner, Mehmet & Fan, Qingliang & Grennes, Thomas, 2021. "Partners in debt: An endogenous non-linear analysis of the effects of public and private debt on growth," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 694-711.
  3. Nicolas Apfel & Helmut Farbmacher & Rebecca Groh & Martin Huber & Henrika Langen, 2022. "Detecting Grouped Local Average Treatment Effects and Selecting True Instruments," Papers 2207.04481, arXiv.org, revised Oct 2023.
  4. Kogure, Katsuo & Kubo, Masahiro, 2022. "Cambodian Refugees," Discussion paper series HIAS-E-125, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
  5. Nicolas Apfel & Frank Windmeijer, 2022. "The Falsification Adaptive Set in Linear Models with Instrumental Variables that Violate the Exclusion or Conditional Exogeneity Restriction," Papers 2212.04814, arXiv.org, revised Apr 2024.
  6. Hyunseung Kang & Youjin Lee & T. Tony Cai & Dylan S. Small, 2022. "Two robust tools for inference about causal effects with invalid instruments," Biometrics, The International Biometric Society, vol. 78(1), pages 24-34, March.
  7. Frank Windmeijer & Xiaoran Liang & Fernando P. Hartwig & Jack Bowden, 2021. "The confidence interval method for selecting valid instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 752-776, September.
  8. Xiaoran Liang & Eleanor Sanderson & Frank Windmeijer, 2022. "Selecting Valid Instrumental Variables in Linear Models with Multiple Exposure Variables: Adaptive Lasso and the Median-of-Medians Estimator," Papers 2208.05278, arXiv.org.
  9. Biewen, Martin & Fitzenberger, Bernd & Seckler, Matthias, 2020. "Counterfactual quantile decompositions with selection correction taking into account Huber/Melly (2015): An application to the German gender wage gap," Labour Economics, Elsevier, vol. 67(C).
  10. Marcus Munafò & Neil M. Davies & George Davey Smith, 2020. "Can genetics reveal the causes and consequences of educational attainment?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 681-688, February.
  11. Nicolas Apfel, 2019. "Relaxing the Exclusion Restriction in Shift-Share Instrumental Variable Estimation," Papers 1907.00222, arXiv.org, revised Jul 2022.
  12. Martin, Stephen & Claxton, Karl & Lomas, James & Longo, Francesco, 2023. "The impact of different types of NHS expenditure on health: Marginal cost per QALY estimates for England for 2016/17," Health Policy, Elsevier, vol. 132(C).
  13. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics and Public Policy Working Papers 2019-04, University of Adelaide, School of Economics and Public Policy.
  14. Guber, Raphael, 2018. "Instrument Validity Tests with Causal Trees: With an Application to the Same-sex Instrument," MEA discussion paper series 201805, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
  15. Nicolas Apfel & Julia Hatamyar & Martin Huber & Jannis Kueck, 2024. "Learning control variables and instruments for causal analysis in observational data," Papers 2407.04448, arXiv.org.
  16. Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
  17. Jinyuan Chang & Zhentao Shi & Jia Zhang, 2021. "Culling the herd of moments with penalized empirical likelihood," Papers 2108.03382, arXiv.org, revised May 2022.
  18. Huntington-Klein Nick, 2020. "Instruments with Heterogeneous Effects: Bias, Monotonicity, and Localness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 182-208, January.
  19. Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
  20. Yiqi Lin & Frank Windmeijer & Xinyuan Song & Qingliang Fan, 2022. "On the instrumental variable estimation with many weak and invalid instruments," Papers 2207.03035, arXiv.org, revised Dec 2023.
  21. Ruoyu Wang & Qihua Wang & Wang Miao, 2023. "A robust fusion-extraction procedure with summary statistics in the presence of biased sources," Biometrika, Biometrika Trust, vol. 110(4), pages 1023-1040.
  22. Kumari, Meena & Bao, Yanchun & S. Clarke, Paul & Smart, Melissa, 2018. "A comparison of robust methods for Mendelian randomization using multiple genetic variants," ISER Working Paper Series 2018-08, Institute for Social and Economic Research.
  23. Christian M. Dahl & Torben S. D. Johansen & Emil N. S{o}rensen & Christian E. Westermann & Simon F. Wittrock, 2021. "Applications of Machine Learning in Document Digitisation," Papers 2102.03239, arXiv.org.
  24. Christoph F. Kurz & Michael Laxy, 2020. "Application of Mendelian Randomization to Investigate the Association of Body Mass Index with Health Care Costs," Medical Decision Making, , vol. 40(2), pages 156-169, February.
  25. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
  26. Matthew Harding & Carlos Lamarche & Chris Muris, 2022. "Estimation of a Factor-Augmented Linear Model with Applications Using Student Achievement Data," Papers 2203.03051, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.