IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v40y2020i2p156-169.html
   My bibliography  Save this article

Application of Mendelian Randomization to Investigate the Association of Body Mass Index with Health Care Costs

Author

Listed:
  • Christoph F. Kurz

    (Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Neuherberg, Bayern, Germany
    German Center for Diabetes Research, Neuherberg, Bayern, Germany)

  • Michael Laxy

    (Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Neuherberg, Bayern, Germany
    German Center for Diabetes Research, Neuherberg, Bayern, Germany)

Abstract

Causal effect estimates for the association of obesity with health care costs can be biased by reversed causation and omitted variables. In this study, we use genetic variants as instrumental variables to overcome these limitations, a method that is often called Mendelian randomization (MR). We describe the assumptions, available methods, and potential pitfalls of using genetic information and how to address them. We estimate the effect of body mass index (BMI) on total health care costs using data from a German observational study and from published large-scale data. In a meta-analysis of several MR approaches, we find that models using genetic instruments identify additional annual costs of €280 for a 1-unit increase in BMI. This is more than 3 times higher than estimates from linear regression without instrumental variables (€75). We found little evidence of a nonlinear relationship between BMI and health care costs. Our results suggest that the use of genetic instruments can be a powerful tool for estimating causal effects in health economic evaluation that might be superior to other types of instruments where there is a strong association with a modifiable risk factor.

Suggested Citation

  • Christoph F. Kurz & Michael Laxy, 2020. "Application of Mendelian Randomization to Investigate the Association of Body Mass Index with Health Care Costs," Medical Decision Making, , vol. 40(2), pages 156-169, February.
  • Handle: RePEc:sae:medema:v:40:y:2020:i:2:p:156-169
    DOI: 10.1177/0272989X20905809
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X20905809
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X20905809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    2. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    3. Taylor, Amy E. & Davies, Neil M. & Ware, Jennifer J. & VanderWeele, Tyler & Smith, George Davey & Munafò, Marcus R., 2014. "Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates," Economics & Human Biology, Elsevier, vol. 13(C), pages 99-106.
    4. Edward C. Norton & Euna Han, 2008. "Genetic information, obesity, and labor market outcomes," Health Economics, John Wiley & Sons, Ltd., vol. 17(9), pages 1089-1104, September.
    5. von Hinke, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2016. "Genetic markers as instrumental variables," Journal of Health Economics, Elsevier, vol. 45(C), pages 131-148.
    6. Drummond, Michael F. & Sculpher, Mark J. & Claxton, Karl & Stoddart, Greg L. & Torrance, George W., 2015. "Methods for the Economic Evaluation of Health Care Programmes," OUP Catalogue, Oxford University Press, edition 4, number 9780199665884.
    7. Shadrach Dare & Daniel F Mackay & Jill P Pell, 2015. "Relationship between Smoking and Obesity: A Cross-Sectional Study of 499,504 Middle-Aged Adults in the UK General Population," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    8. Black, Nicole & Hughes, Robert & Jones, Andrew M., 2018. "The health care costs of childhood obesity in Australia: An instrumental variables approach," Economics & Human Biology, Elsevier, vol. 31(C), pages 1-13.
    9. Willage, Barton, 2018. "The effect of weight on mental health: New evidence using genetic IVs," Journal of Health Economics, Elsevier, vol. 57(C), pages 113-130.
    10. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bozzi, Debra G. & Nicholas, Lauren Hersch, 2021. "A Causal Estimate of Long-Term Health Care Spending Attributable to Body Mass Index Among Adults," Economics & Human Biology, Elsevier, vol. 41(C).
    2. Jiwoo Lee & Sakari Jukarainen & Antti Karvanen & Padraig Dixon & Neil M. Davies & George Davey Smith & Pradeep Natarajan & Andrea Ganna, 2023. "Quantifying the causal impact of biological risk factors on healthcare costs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas Hafner & Harald Tauchmann & Ansgar Wübker, 2021. "Does moderate weight loss affect subjective health perception in obese individuals? Evidence from field experimental data," Empirical Economics, Springer, vol. 61(4), pages 2293-2333, October.
    2. Christina Hansen Edwards & Johan Håkon Bjørngaard & Jonas Minet Kinge, 2021. "The relationship between body mass index and income: Using genetic variants from HUNT as instrumental variables," Health Economics, John Wiley & Sons, Ltd., vol. 30(8), pages 1933-1949, August.
    3. Dixon, Padraig & Hollingworth, William & Harrison, Sean & Davies, Neil M. & Davey Smith, George, 2020. "Mendelian Randomization analysis of the causal effect of adiposity on hospital costs," Journal of Health Economics, Elsevier, vol. 70(C).
    4. Jun Wang & Qihui Chen & Gang Chen & Yingxiang Li & Guoshu Kong & Chen Zhu, 2020. "What is creating the height premium? New evidence from a Mendelian randomization analysis in China," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    5. Rong Fu & Haruko Noguchi & Shuhei Kaneko & Akira Kawamura & Cheolmin Kang & Hideto Takahashi & Nanako Tamiya, 2019. "How do cardiovascular diseases harm labor force participation? Evidence of nationally representative survey data from Japan, a super-aged society," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-16, July.
    6. Barban, Nicola & De Cao, Elisabetta & Oreffice, Sonia & Quintana-Domeque, Climent, 2021. "The effect of education on spousal education: A genetic approach," Labour Economics, Elsevier, vol. 71(C).
    7. Pekkurnaz, Didem, 2023. "Causal effect of obesity on the probability of employment in women in Turkey," Economics & Human Biology, Elsevier, vol. 51(C).
    8. Petri Böckerman & John Cawley & Jutta Viinikainen & Terho Lehtimäki & Suvi Rovio & Ilkka Seppälä & Jaakko Pehkonen & Olli Raitakari, 2019. "The effect of weight on labor market outcomes: An application of genetic instrumental variables," Health Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 65-77, January.
    9. Nicola Barban & Elisabetta De Cao & Sonia Oreffice & Climent Quintana-Domeque, 2016. "Assortative Mating on Education: A Genetic Assessment," Working Papers 2016-034, Human Capital and Economic Opportunity Working Group.
    10. Matthew Franklin & James Lomas & Simon Walker & Tracey Young, 2019. "An Educational Review About Using Cost Data for the Purpose of Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 37(5), pages 631-643, May.
    11. Amin, Vikesh & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2020. "The impact of BMI on mental health: Further evidence from genetic markers," Economics & Human Biology, Elsevier, vol. 38(C).
    12. Frank Windmeijer & Xiaoran Liang & Fernando P. Hartwig & Jack Bowden, 2021. "The confidence interval method for selecting valid instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 752-776, September.
    13. Paolo Nicola Barbieri & Hieu Nguyen, 2022. "Diabetes and Young Adults’ Labor Supply: Evidence from a Novel Instrumental Variable Strategy," Journal of Labor Research, Springer, vol. 43(1), pages 1-23, March.
    14. Bing Wang & Renee Santoreneos & Hossein Afzali & Lynne Giles & Helen Marshall, 2018. "Costs of Invasive Meningococcal Disease: A Global Systematic Review," PharmacoEconomics, Springer, vol. 36(10), pages 1201-1222, October.
    15. von Hinke, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2016. "Genetic markers as instrumental variables," Journal of Health Economics, Elsevier, vol. 45(C), pages 131-148.
    16. Willage, Barton, 2018. "The effect of weight on mental health: New evidence using genetic IVs," Journal of Health Economics, Elsevier, vol. 57(C), pages 113-130.
    17. Shu Ng & Edward Norton & David Guilkey & Barry Popkin, 2012. "Estimation of a dynamic model of weight," Empirical Economics, Springer, vol. 42(2), pages 413-443, April.
    18. Padraig Dixon & George Davey Smith & Stephanie von Hinke & Neil M. Davies & William Hollingworth, 2016. "Estimating Marginal Healthcare Costs Using Genetic Variants as Instrumental Variables: Mendelian Randomization in Economic Evaluation," PharmacoEconomics, Springer, vol. 34(11), pages 1075-1086, November.
    19. von Hinke Kessler Scholder, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2012. "The effect of fat mass on educational attainment: Examining the sensitivity to different identification strategies," Economics & Human Biology, Elsevier, vol. 10(4), pages 405-418.
    20. Hyeokmoon Kweon & Casper A.P. Burik & Richard Karlsson Linner & Ronald de Vlaming & Aysu Okbay & Daphne Martschenko & Kathryn Paige Harden & Thomas A. DiPrete & Philipp D. Koellinger, 2020. "Genetic Fortune: Winning or Losing Education, Income, and Health," Tinbergen Institute Discussion Papers 20-053/V, Tinbergen Institute, revised 01 Dec 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:40:y:2020:i:2:p:156-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.