Applications of Machine Learning in Document Digitisation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024.
"Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Susan Athey & Guido Imbens & Jonas Metzger & Evan Munro, 2019. "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," Papers 1909.02210, arXiv.org, revised Jul 2020.
- Susan Athey & Guido W. Imbens & Jonas Metzger & Evan M. Munro, 2019. "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," NBER Working Papers 26566, National Bureau of Economic Research, Inc.
- Joshua D. Angrist & Alan B. Keueger, 1991.
"Does Compulsory School Attendance Affect Schooling and Earnings?,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
- Joshua D. Angrist & Alan B. Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," Working Papers 653, Princeton University, Department of Economics, Industrial Relations Section..
- Joshua D. Angrist & Alan B. Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," NBER Working Papers 3572, National Bureau of Economic Research, Inc.
- Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019.
"On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
- Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2016. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Bristol Economics Discussion Papers 16/674, School of Economics, University of Bristol, UK, revised 08 Aug 2017.
- Windmeijer, Frank & Farbmacher, Helmut & Davies, Neil & Smith, George Davey, 2017. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168196, Verein für Socialpolitik / German Economic Association.
- Windmeijer, F.; Farbmacher, H.; Davies, N.; Davey Smith, G.;, 2017. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Health, Econometrics and Data Group (HEDG) Working Papers 17/22, HEDG, c/o Department of Economics, University of York.
- Ran Abramitzky & Leah Boustan & Katherine Eriksson & James Feigenbaum & Santiago Pérez, 2021.
"Automated Linking of Historical Data,"
Journal of Economic Literature, American Economic Association, vol. 59(3), pages 865-918, September.
- Ran Abramitzky & Leah Platt Boustan & Katherine Eriksson & James J. Feigenbaum & Santiago Pérez, 2019. "Automated Linking of Historical Data," NBER Working Papers 25825, National Bureau of Economic Research, Inc.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jovet, Yoann & Lefèvre, Frédéric & Laurent, Alexis & Clausse, Marc, 2022. "Combined energetic, economic and climate change assessment of heat pumps for industrial waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
- Dahl, Christian Møller & Hansen, Casper Worm & Jensen, Peter Sandholdt & Karlsson, Martin & Kühnle, Daniel, 2023.
"School Closures, Mortality, and Human Capital: Evidence from the Universe of Closures during the 1918 Pandemic in Sweden,"
CEPR Discussion Papers
18399, C.E.P.R. Discussion Papers.
- Dahl, Christian M. & Hansen, Casper W. & Jensen, Peter S. & Karlsson, Martin & Kühnle, Daniel, 2023. "School Closures, Mortality, and Human Capital: Evidence from the Universe of Closures during the 1918 Pandemic in Sweden," IZA Discussion Papers 16592, Institute of Labor Economics (IZA).
- Albers, Thilo N. H. & Kappner, Kalle, 2022. "Perks and Pitfalls of City Directories as a Micro-Geographic Data Source," Rationality and Competition Discussion Paper Series 315, CRC TRR 190 Rationality and Competition.
- Blomqvist, Christopher & Enflo, Kerstin & Jakobsson, Andreas & Åström, Kalle, 2023. "Reading the ransom: Methodological advancements in extracting the Swedish Wealth Tax of 1571," Explorations in Economic History, Elsevier, vol. 87(C).
- Dahl, Christian M. & Johansen, Torben S.D. & Sørensen, Emil N. & Wittrock, Simon, 2023.
"HANA: A handwritten name database for offline handwritten text recognition,"
Explorations in Economic History, Elsevier, vol. 87(C).
- Christian M. Dahl & Torben Johansen & Emil N. S{o}rensen & Simon Wittrock, 2021. "HANA: A HAndwritten NAme Database for Offline Handwritten Text Recognition," Papers 2101.10862, arXiv.org, revised Mar 2022.
- Albers, Thilo N.H. & Kappner, Kalle, 2023. "Perks and pitfalls of city directories as a micro-geographic data source," Explorations in Economic History, Elsevier, vol. 87(C).
- Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Claudia ANTAL-VAIDA, 2021. "Basic Hyperparameters Tuning Methods for Classification Algorithms," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 25(2), pages 64-74.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
- Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Grodecka, Anna & Hull, Isaiah, 2019. "The Impact of Local Taxes and Public Services on Property Values," Working Paper Series 374, Sveriges Riksbank (Central Bank of Sweden).
- Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023.
"Density forecasts of inflation: a quantile regression forest approach,"
CEPR Discussion Papers
18298, C.E.P.R. Discussion Papers.
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Density forecasts of inflation: a quantile regression forest approach," Working Paper Series 2830, European Central Bank.
- M. Lenza & I. Moutachaker & I. Moutachaker, 2024. "Density forecasts of inflation : a quantile regression forest approach," Documents de Travail de l'Insee - INSEE Working Papers 2024-12, Institut National de la Statistique et des Etudes Economiques.
- Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2018. "Économétrie & Machine Learning," Working Papers hal-01568851, HAL.
- Daniele Guariso, 2018. "Terrorist Attacks and Immigration Rhetoric: A Natural Experiment on British MPs," Working Paper Series 1218, Department of Economics, University of Sussex Business School.
- Ajit Desai, 2023.
"Machine Learning for Economics Research: When What and How?,"
Papers
2304.00086, arXiv.org, revised Apr 2023.
- Ajit Desai, 2023. "Machine learning for economics research: when, what and how," Staff Analytical Notes 2023-16, Bank of Canada.
- Isaiah Hull & Anna Grodecka-Messi, 2022. "Measuring the Impact of Taxes and Public Services on Property Values: A Double Machine Learning Approach," Papers 2203.14751, arXiv.org.
- Susan Athey & Julie Tibshirani & Stefan Wager, 2016.
"Generalized Random Forests,"
Papers
1610.01271, arXiv.org, revised Apr 2018.
- Athey, Susan & Tibshirani, Julie & Wager, Stefan, 2017. "Generalized Random Forests," Research Papers 3575, Stanford University, Graduate School of Business.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022.
"Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach,"
Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," IZA Discussion Papers 10961, Institute of Labor Economics (IZA).
- Michael Knaus & Michael Lechner & Anthony Strittmatter, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Papers 1709.10279, arXiv.org, revised May 2018.
- Lechner, Michael & Strittmatter, Anthony & Knaus, Michael C., 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," CEPR Discussion Papers 12224, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Economics Working Paper Series 1711, University of St. Gallen, School of Economics and Political Science.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Alpino, Matteo & Hauge, Karen Evelyn & Kotsadam, Andreas & Markussen, Simen, 2022. "Effects of dialogue meetings on sickness absence—Evidence from a large field experiment," Journal of Health Economics, Elsevier, vol. 83(C).
- Olga Takacs & Janos Vincze, 2019. "Blinder-Oaxaca decomposition with recursive tree-based methods: a technical note," CERS-IE WORKING PAPERS 1923, Institute of Economics, Centre for Economic and Regional Studies.
- Mr. Andrew J Tiffin, 2019. "Machine Learning and Causality: The Impact of Financial Crises on Growth," IMF Working Papers 2019/228, International Monetary Fund.
- Alena Skolkova, 2023. "Instrumental Variable Estimation with Many Instruments Using Elastic-Net IV," CERGE-EI Working Papers wp759, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021.
"Deep Neural Networks for Estimation and Inference,"
Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2018. "Deep Neural Networks for Estimation and Inference," Papers 1809.09953, arXiv.org, revised Sep 2019.
- Olga Takács & János Vincze, 2020. "The gender-dependent structure of wages in Hungary: results using machine learning techniques," CERS-IE WORKING PAPERS 2044, Institute of Economics, Centre for Economic and Regional Studies.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-04-12 (Big Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.03239. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.