My bibliography
Save this item
Trimmed means for functional data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Miguel Martínez Comesaña & Sandra Martínez Mariño & Pablo Eguía Oller & Enrique Granada Álvarez & Aitor Erkoreka González, 2020. "A Functional Data Analysis for Assessing the Impact of a Retrofitting in the Energy Performance of a Building," Mathematics, MDPI, vol. 8(4), pages 1-20, April.
- Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
- Weiyi Xie & Sebastian Kurtek & Karthik Bharath & Ying Sun, 2017. "A Geometric Approach to Visualization of Variability in Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 979-993, July.
- Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
- Daniel Hlubinka & Irène Gijbels & Marek Omelka & Stanislav Nagy, 2015. "Integrated data depth for smooth functions and its application in supervised classification," Computational Statistics, Springer, vol. 30(4), pages 1011-1031, December.
- Olusola Samuel Makinde, 2019. "Classification rules based on distribution functions of functional depth," Statistical Papers, Springer, vol. 60(3), pages 629-640, June.
- Sara López-Pintado & Ying Sun & Juan Lin & Marc Genton, 2014. "Simplicial band depth for multivariate functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 321-338, September.
- Sara López-Pintado, 2015. "Discussion of Multivariate functional outlier detection by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 253-256, July.
- Francesca Fortuna & Alessia Naccarato & Silvia Terzi, 2024. "Country rankings according to well-being evolution: composite indicators from a functional data analysis perspective," Annals of Operations Research, Springer, vol. 342(3), pages 1529-1546, November.
- Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
- Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast DD-classification of functional data," Statistical Papers, Springer, vol. 58(4), pages 1055-1089, December.
- Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "Robust simultaneous inference for the mean function of functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 785-803, September.
- Xurxo Rigueira & María Araújo & Javier Martínez & Paulino José García-Nieto & Iago Ocarranza, 2022. "Functional Data Analysis for the Detection of Outliers and Study of the Effects of the COVID-19 Pandemic on Air Quality: A Case Study in Gijón, Spain," Mathematics, MDPI, vol. 10(14), pages 1-27, July.
- Daniel Kosiorowski & Jerzy P. Rydlewski, 2020. "Centrality-oriented causality. A study of EU agricultural subsidies and digital developement in Poland," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(3), pages 47-63.
- Nagy, Stanislav & Gijbels, Irène & Hlubinka, Daniel, 2016. "Weak convergence of discretely observed functional data with applications," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 46-62.
- Fraiman, Ricardo & Justel, Ana & Svarc, Marcela, 2010. "Pattern recognition via projection-based kNN rules," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1390-1403, May.
- Kuhnt, Sonja & Rehage, André, 2016. "An angle-based multivariate functional pseudo-depth for shape outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 325-340.
- Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
- Javier Martínez Torres & Jorge Pastor Pérez & Joaquín Sancho Val & Aonghus McNabola & Miguel Martínez Comesaña & John Gallagher, 2020. "A Functional Data Analysis Approach for the Detection of Air Pollution Episodes and Outliers: A Case Study in Dublin, Ireland," Mathematics, MDPI, vol. 8(2), pages 1-19, February.
- Pallavi Sawant & Nedret Billor & Hyejin Shin, 2012. "Functional outlier detection with robust functional principal component analysis," Computational Statistics, Springer, vol. 27(1), pages 83-102, March.
- Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.
- Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- repec:cte:wsrepe:24606 is not listed on IDEAS
- López Pintado, Sara, 2006. "Depth-based inference for functional data," DES - Working Papers. Statistics and Econometrics. WS ws063113, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Nagy, Stanislav, 2017. "Integrated depth for measurable functions and sets," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 165-170.
- López Pintado, Sara, 2006. "On the concept of depth for functional data," DES - Working Papers. Statistics and Econometrics. WS ws063012, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Manuel Febrero & Pedro Galeano & Wenceslao González-Manteiga, 2007. "A functional analysis of NOx levels: location and scale estimation and outlier detection," Computational Statistics, Springer, vol. 22(3), pages 411-427, September.
- Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
- Lopez-Pintado, Sara & Romo, Juan, 2007. "Depth-based inference for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4957-4968, June.
- repec:cte:wsrepe:24615 is not listed on IDEAS
- Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
- Lee, Seokho & Shin, Hyejin & Billor, Nedret, 2013. "M-type smoothing spline estimators for principal functions," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 89-100.
- Cristina Anton & Iain Smith, 2024. "Model-based clustering of functional data via mixtures of t distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 563-595, September.
- Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
- Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Fraiman, Ricardo & Svarc, Marcela, 2013. "Resistant estimates for high dimensional and functional data based on random projections," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 326-338.
- Melody Denhere & Huybrechts F. Bindele, 2016. "Rank estimation for the functional linear model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1928-1944, August.
- Han Shang, 2014.
"A survey of functional principal component analysis,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
- Han Lin Shang, 2011. "A survey of functional principal component analysis," Monash Econometrics and Business Statistics Working Papers 6/11, Monash University, Department of Econometrics and Business Statistics.
- Gijbels, Irène & Nagy, Stanislav, 2015. "Consistency of non-integrated depths for functional data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 259-282.
- Gromenko, Oleksandr & Kokoszka, Piotr, 2013. "Nonparametric inference in small data sets of spatially indexed curves with application to ionospheric trend determination," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 82-94.
- Daniel Kosiorowski & Jerzy P. Rydlewski & Ma{l}gorzata Snarska, 2016. "Detecting a Structural Change in Functional Time Series Using Local Wilcoxon Statistic," Papers 1604.03776, arXiv.org, revised Oct 2019.
- Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
- Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
- Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
- Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
- Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," LSE Research Online Documents on Economics 120774, London School of Economics and Political Science, LSE Library.
- Laha, A. K. & Rathi, Poonam, 2017. "New Approaches to Prediction using Functional Data Analysis," IIMA Working Papers WP 2017-08-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
- Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- repec:cte:wsrepe:ws140101 is not listed on IDEAS
- Marco Grasso & Bianca Maria Colosimo & Fugee Tsung, 2017. "A phase I multi-modelling approach for profile monitoring of signal data," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4354-4377, August.
- Dai, Wenlin & Mrkvička, Tomáš & Sun, Ying & Genton, Marc G., 2020. "Functional outlier detection and taxonomy by sequential transformations," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
- Amovin-Assagba, Martial & Gannaz, Irène & Jacques, Julien, 2022. "Outlier detection in multivariate functional data through a contaminated mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Cristian F. Jiménez‐Varón & Fouzi Harrou & Ying Sun, 2024. "Pointwise data depth for univariate and multivariate functional outlier detection," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
- Kosiorowski Daniel & Jerzy P. Rydlewski, 2019. "Centrality-oriented Causality -- A Study of EU Agricultural Subsidies and Digital Developement in Poland," Papers 1908.11099, arXiv.org, revised Sep 2019.
- Daniel Kosiorowski, 2014. "Functional Regression in Short-Term Prediction of Economic Time Series," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(4), pages 611-626, September.
- Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
- repec:cte:wsrepe:ws133329 is not listed on IDEAS
- Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
- Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
- Sergio Bolívar & Alicia Nieto-Reyes & Heather L. Rogers, 2023. "Statistical Depth for Text Data: An Application to the Classification of Healthcare Data," Mathematics, MDPI, vol. 11(1), pages 1-20, January.
- Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
- Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.
- Oluwasegun Taiwo Ojo & Antonio Fernández Anta & Rosa E. Lillo & Carlo Sguera, 2022. "Detecting and classifying outliers in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 725-760, September.
- Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
- Zonghui Yao & Dunia López-Pintado & Sara López-Pintado, 2022. "Uncertainty analysis of contagion processes based on a functional approach," Working Papers 22.12, Universidad Pablo de Olavide, Department of Economics.
- Fabrizio Maturo & Francesca Fortuna & Tonio Di Battista, 2024. "Outliers detection in assessment tests’ quality evaluation through the blended use of functional data analysis and item response theory," Annals of Operations Research, Springer, vol. 342(3), pages 1547-1562, November.
- J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
- Ofélia Anjos & Miguel Martínez Comesaña & Ilda Caldeira & Soraia Inês Pedro & Pablo Eguía Oller & Sara Canas, 2020. "Application of Functional Data Analysis and FTIR-ATR Spectroscopy to Discriminate Wine Spirits Ageing Technologies," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
- López-Pintado, Sara & Romo, Juan, 2011. "A half-region depth for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1679-1695, April.
- Graciela Estévez-Pérez & Philippe Vieu, 2021. "A new way for ranking functional data with applications in diagnostic test," Computational Statistics, Springer, vol. 36(1), pages 127-154, March.
- Agostinelli, Claudio, 2018. "Local half-region depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 67-79.
- Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
- Agustín Alvarez & Marcela Svarc, 2021. "A variable selection procedure for depth measures," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 247-271, June.
- Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.