IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws063012.html
   My bibliography  Save this paper

On the concept of depth for functional data

Author

Listed:
  • López Pintado, Sara

Abstract

The statistical analysis of functional data is a growing need in many research areas. We propose a new depth notion for functional observations based on the graphic representation of the curves. Given a collection of functions, it allows to establish the centrality of a function and provides a natural center-outward ordering of the sample curves. Robust statistics such as the median function or a trimmed mean function can be defined from this depth definition. Its finite-dimensional version provides a new depth for multivariate data that is computationally very fast and turns out to be convenient to study high-dimensional observations. The natural properties are established for the new depth and the uniform consistency of the sample depth is proved. Simulation results show that the trimmed mean presents a better behavior than the mean for contaminated models. Several real data sets are considered to illustrate this new concept of depth. Finally, we use this new depth to generalize to functions the Wilcoxon rank sum test. It allows to decide whether two groups of curves come from the same population. This functional rank test is applied to girls and boys growth curves concluding that they present different growth patterns.

Suggested Citation

  • López Pintado, Sara, 2006. "On the concept of depth for functional data," DES - Working Papers. Statistics and Econometrics. WS ws063012, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws063012
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/ab565c2c-9327-49bc-a73b-7b609820e912/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oja, Hannu, 1983. "Descriptive statistics for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 327-332, October.
    2. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rob J. Hyndman & Han Lin Shang, 2008. "Rainbow plots, Bagplots and Boxplots for Functional Data," Monash Econometrics and Business Statistics Working Papers 9/08, Monash University, Department of Econometrics and Business Statistics.
    2. López Pintado, Sara, 2006. "Depth-based inference for functional data," DES - Working Papers. Statistics and Econometrics. WS ws063113, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Lopez-Pintado, Sara & Romo, Juan, 2007. "Depth-based inference for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4957-4968, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-Pintado, Sara & Romo, Juan, 2011. "A half-region depth for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1679-1695, April.
    2. López Pintado, Sara, 2006. "Depth-based inference for functional data," DES - Working Papers. Statistics and Econometrics. WS ws063113, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
    4. Lopez-Pintado, Sara & Romo, Juan, 2007. "Depth-based inference for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4957-4968, June.
    5. Weiyi Xie & Sebastian Kurtek & Karthik Bharath & Ying Sun, 2017. "A Geometric Approach to Visualization of Variability in Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 979-993, July.
    6. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    7. G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
    8. Hwang, Jinsoo & Jorn, Hongsuk & Kim, Jeankyung, 2004. "On the performance of bivariate robust location estimators under contamination," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 587-601, January.
    9. Masato Okamoto, 2009. "Decomposition of gini and multivariate gini indices," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 7(2), pages 153-177, June.
    10. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    11. Averous, Jean & Meste, Michel, 1997. "Median Balls: An Extension of the Interquantile Intervals to Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 222-241, November.
    12. repec:cte:wsrepe:ws140101 is not listed on IDEAS
    13. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    14. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    15. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
    16. Eisenberg, Bennett, 2015. "The multivariate Gini ratio," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 292-298.
    17. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
    18. Kwiecien, Robert & Gather, Ursula, 2007. "Jensen's inequality for the Tukey median," Technical Reports 2007,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    20. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    21. repec:spo:wpmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    22. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws063012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.