IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i5p1390-1403.html
   My bibliography  Save this article

Pattern recognition via projection-based kNN rules

Author

Listed:
  • Fraiman, Ricardo
  • Justel, Ana
  • Svarc, Marcela

Abstract

A new procedure for pattern recognition is introduced based on the concepts of random projections and nearest neighbors. It can be considered as an improvement of the classical nearest neighbor classification rules. Besides the concept of neighbors, the notion of district, a larger set into which the data will be projected, is introduced. Then a one-dimensional kNN method is applied to the projected data on randomly selected directions. This method, which is more accurate to handle high-dimensional data, has some robustness properties. The procedure is also universally consistent. Moreover, the method is challenged with the Isolet data set where a very high classification score is obtained.

Suggested Citation

  • Fraiman, Ricardo & Justel, Ana & Svarc, Marcela, 2010. "Pattern recognition via projection-based kNN rules," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1390-1403, May.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:5:p:1390-1403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00461-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Croux, Christophe & Joossens, Kristel & Lemmens, Aurelie, 2007. "Trimmed bagging," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 362-368, September.
    2. Chakraborty, Sounak, 2009. "Simultaneous cancer classification and gene selection with Bayesian nearest neighbor method: An integrated approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1462-1474, February.
    3. Wang, Xiaogang & Qiu, Weiliang & Zamar, Ruben H., 2007. "CLUES: A non-parametric clustering method based on local shrinking," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 286-298, September.
    4. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    5. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    6. Fraiman, Ricardo & Justel, Ana & Svarc, Marcela, 2008. "Selection of Variables for Cluster Analysis and Classification Rules," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1294-1303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    2. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    3. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    4. María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.
    5. Chang, Fang & Qiu, Weiliang & Zamar, Ruben H. & Lazarus, Ross & Wang, Xiaogang, 2010. "clues: An R Package for Nonparametric Clustering Based on Local Shrinking," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i04).
    6. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    7. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    8. Qiu Weiliang & He Wenqing & Wang Xiaogang & Lazarus Ross, 2008. "A Marginal Mixture Model for Selecting Differentially Expressed Genes across Two Types of Tissue Samples," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-30, October.
    9. Márton Gosztonyi & Csákné Filep Judit, 2022. "Profiling (Non-)Nascent Entrepreneurs in Hungary Based on Machine Learning Approaches," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    10. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    11. repec:cte:wsrepe:ws140101 is not listed on IDEAS
    12. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    13. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    14. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
    15. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
    16. Zhao, Jianhua & Yu, Philip L.H. & Shi, Lei & Li, Shulan, 2012. "Separable linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4290-4300.
    17. Shaheena Bashir & Edward Carter, 2010. "Penalized multinomial mixture logit model," Computational Statistics, Springer, vol. 25(1), pages 121-141, March.
    18. Park, Junyong & Park, DoHwan, 2015. "Stein’s method in high dimensional classification and applications," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 110-125.
    19. Germán Caruso & Walter Sosa-Escudero & Marcela Svarc, 2015. "Deprivation and the Dimensionality of Welfare: A Variable-Selection Cluster-Analysis Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(4), pages 702-722, December.
    20. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    21. Chakraborty, Sounak, 2009. "Bayesian binary kernel probit model for microarray based cancer classification and gene selection," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4198-4209, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:5:p:1390-1403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.