IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i4p1679-1695.html
   My bibliography  Save this article

A half-region depth for functional data

Author

Listed:
  • López-Pintado, Sara
  • Romo, Juan

Abstract

A new definition of depth for functional observations is introduced based on the notion of "half-region" determined by a curve. The half-region depth provides a simple and natural criterion to measure the centrality of a function within a sample of curves. It has computational advantages relative to other concepts of depth previously proposed in the literature which makes it applicable to the analysis of high-dimensional data. Based on this depth a sample of curves can be ordered from the center-outward and order statistics can be defined. The properties of the half-region depth, such as consistency and uniform convergence, are established. A simulation study shows the robustness of this new definition of depth when the curves are contaminated. Finally, real data examples are analyzed.

Suggested Citation

  • López-Pintado, Sara & Romo, Juan, 2011. "A half-region depth for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1679-1695, April.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1679-1695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00412-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    2. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    3. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.
    4. Lopez-Pintado, Sara & Romo, Juan, 2007. "Depth-based inference for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4957-4968, June.
    5. Oja, Hannu, 1983. "Descriptive statistics for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 327-332, October.
    6. Antonio Cuevas & Manuel Febrero & Ricardo Fraiman, 2007. "Robust estimation and classification for functional data via projection-based depth notions," Computational Statistics, Springer, vol. 22(3), pages 481-496, September.
    7. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    8. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The random Tukey depth," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4979-4988, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gijbels, Irène & Nagy, Stanislav, 2015. "Consistency of non-integrated depths for functional data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 259-282.
    2. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    3. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    4. Ana Arribas-Gil & Juan Romo, 2015. "Discussion of “Multivariate functional outlier detection”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 263-267, July.
    5. Oluwasegun Taiwo Ojo & Antonio Fernández Anta & Rosa E. Lillo & Carlo Sguera, 2022. "Detecting and classifying outliers in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 725-760, September.
    6. Kuelbs, James & Zinn, Joel, 2015. "Half-region depth for stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 86-105.
    7. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
    8. Ojo, Oluwasegun Taiwo & Fernández Anta, Antonio & Genton, Marc G., 2022. "Multivariate Functional Outlier Detection using the FastMUOD Indices," DES - Working Papers. Statistics and Econometrics. WS 35665, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
    10. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    11. repec:cte:wsrepe:24615 is not listed on IDEAS
    12. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    13. Kuelbs, James & Zinn, Joel, 2016. "Convergence of quantile and depth regions," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3681-3700.
    14. Nagy, Stanislav & Gijbels, Irène & Hlubinka, Daniel, 2016. "Weak convergence of discretely observed functional data with applications," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 46-62.
    15. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    16. Agostinelli, Claudio, 2018. "Local half-region depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 67-79.
    17. Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
    18. Alicia Nieto-Reyes & Heather Battey & Giacomo Francisci, 2021. "Functional Symmetry and Statistical Depth for the Analysis of Movement Patterns in Alzheimer’s Patients," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
    19. Lucas Fernandez-Piana & Marcela Svarc, 2022. "An integrated local depth measure," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 175-197, June.
    20. Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.
    21. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    22. repec:cte:wsrepe:ws133329 is not listed on IDEAS
    23. repec:cte:wsrepe:24606 is not listed on IDEAS
    24. Epifanio, Irene & Ventura-Campos, Noelia, 2011. "Functional data analysis in shape analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2758-2773, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
    2. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    3. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
    4. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    5. Agostinelli, Claudio, 2018. "Local half-region depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 67-79.
    6. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    7. repec:cte:wsrepe:24606 is not listed on IDEAS
    8. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    9. repec:cte:wsrepe:ws140101 is not listed on IDEAS
    10. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    11. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    12. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
    13. Sara López-Pintado & Ying Sun & Juan Lin & Marc Genton, 2014. "Simplicial band depth for multivariate functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 321-338, September.
    14. Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
    15. Marco Grasso & Bianca Maria Colosimo & Fugee Tsung, 2017. "A phase I multi-modelling approach for profile monitoring of signal data," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4354-4377, August.
    16. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    17. Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
    18. repec:cte:wsrepe:24615 is not listed on IDEAS
    19. Graciela Estévez-Pérez & Philippe Vieu, 2021. "A new way for ranking functional data with applications in diagnostic test," Computational Statistics, Springer, vol. 36(1), pages 127-154, March.
    20. Daniel Hlubinka & Irène Gijbels & Marek Omelka & Stanislav Nagy, 2015. "Integrated data depth for smooth functions and its application in supervised classification," Computational Statistics, Springer, vol. 30(4), pages 1011-1031, December.
    21. Xu, Zishen & Wang, Chenran & Wu, Wei, 2022. "A unified framework on defining depth for point process using function smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    22. Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.
    23. Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1679-1695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.