IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2374-d856959.html
   My bibliography  Save this article

Functional Data Analysis for the Detection of Outliers and Study of the Effects of the COVID-19 Pandemic on Air Quality: A Case Study in Gijón, Spain

Author

Listed:
  • Xurxo Rigueira

    (CINTECX, GESSMin Group, Department of Natural Resources and Environmental Engineering, University of Vigo, 36310 Vigo, Spain)

  • María Araújo

    (CINTECX, GESSMin Group, Department of Natural Resources and Environmental Engineering, University of Vigo, 36310 Vigo, Spain)

  • Javier Martínez

    (CINTECX, GESSMin Group, Department of Applied Mathematics I, University of Vigo, 36310 Vigo, Spain)

  • Paulino José García-Nieto

    (Department of Mathematics, University of Oviedo, 33007 Oviedo, Spain)

  • Iago Ocarranza

    (Possible Incorporated SL, 36211 Vigo, Spain)

Abstract

Air pollution, especially at the ground level, poses a high risk for human health as it can have serious negative effects on the population of certain areas. The high variability of this type of data, which are affected by weather conditions and human activities, makes it difficult for conventional methods to precisely detect anomalous values or outliers. In this paper, classical analysis, statistical process control, and functional data analysis are compared for this purpose. The results obtained motivate the development of a new outlier detector based on the concept of functional directional outlyingness. The validation of this algorithm is perfomed on real air quality data from the city of Gijón, Spain, aiming to detect the proven reduction in NO 2 levels during the COVID-19 lockdown in that city. Three more variables ( SO 2 , PM 10 , and O 3 ) are studied with this technique. The results demonstrate that functional data analysis outperforms the two other methods, and the proposed outlier detector is well suited for the accurate detection of outliers in data with high variability.

Suggested Citation

  • Xurxo Rigueira & María Araújo & Javier Martínez & Paulino José García-Nieto & Iago Ocarranza, 2022. "Functional Data Analysis for the Detection of Outliers and Study of the Effects of the COVID-19 Pandemic on Air Quality: A Case Study in Gijón, Spain," Mathematics, MDPI, vol. 10(14), pages 1-27, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2374-:d:856959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerda Claeskens & Mia Hubert & Leen Slaets & Kaveh Vakili, 2014. "Multivariate Functional Halfspace Depth," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 411-423, March.
    2. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    3. Chen, Yan-Kwang, 2004. "Economic design of control charts for non-normal data using variable sampling policy," International Journal of Production Economics, Elsevier, vol. 92(1), pages 61-74, November.
    4. Freeman, Jade & Modarres, Reza, 2006. "Inverse Box-Cox: The power-normal distribution," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 764-772, April.
    5. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    6. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    2. Dai, Wenlin & Mrkvička, Tomáš & Sun, Ying & Genton, Marc G., 2020. "Functional outlier detection and taxonomy by sequential transformations," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    3. Oluwasegun Taiwo Ojo & Antonio Fernández Anta & Rosa E. Lillo & Carlo Sguera, 2022. "Detecting and classifying outliers in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 725-760, September.
    4. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    5. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    6. Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
    7. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
    8. Kuhnt, Sonja & Rehage, André, 2016. "An angle-based multivariate functional pseudo-depth for shape outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 325-340.
    9. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    10. Nagy, Stanislav & Gijbels, Irène & Hlubinka, Daniel, 2016. "Weak convergence of discretely observed functional data with applications," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 46-62.
    11. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    12. J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
    13. Daniel Hlubinka & Irène Gijbels & Marek Omelka & Stanislav Nagy, 2015. "Integrated data depth for smooth functions and its application in supervised classification," Computational Statistics, Springer, vol. 30(4), pages 1011-1031, December.
    14. Sara López-Pintado, 2015. "Discussion of Multivariate functional outlier detection by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 253-256, July.
    15. Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Gijbels, Irène & Nagy, Stanislav, 2015. "Consistency of non-integrated depths for functional data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 259-282.
    17. Francesca Ieva & Anna Paganoni, 2015. "Discussion of “multivariate functional outlier detection” by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 217-221, July.
    18. repec:cte:wsrepe:24606 is not listed on IDEAS
    19. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    20. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    21. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2374-:d:856959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.