IDEAS home Printed from https://ideas.repec.org/r/spr/psycho/v72y2007i2p141-157.html
   My bibliography  Save this item

A class of multidimensional IRT models for testing unidimensionality and clustering items

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Francesco, Bartolucci & Silvia, Bacci & Claudia, Pigini, 2015. "A misspecification test for finite-mixture logistic models for clustered binary and ordered responses," MPRA Paper 64220, University Library of Munich, Germany.
  2. Michela Gnaldi & Simone Del Sarto, 2018. "Time Use Habits of Italian Generation Y: Dimensions of Leisure Preferences," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(3), pages 1187-1203, August.
  3. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
  4. Pieroni, Luca & d'Agostino, Giorgio & Bartolucci, Francesco, 2013. "Identifying corruption through latent class models: evidence from transition economies," MPRA Paper 43981, University Library of Munich, Germany.
  5. Michael Brusco & Hans-Friedrich Köhn & Douglas Steinley, 2015. "An Exact Method for Partitioning Dichotomous Items Within the Framework of the Monotone Homogeneity Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 949-967, December.
  6. Alexander Robitzsch, 2024. "Estimation of Standard Error, Linking Error, and Total Error for Robust and Nonrobust Linking Methods in the Two-Parameter Logistic Model," Stats, MDPI, vol. 7(3), pages 1-21, June.
  7. Francesco Bartolucci & Valentino Dardanoni & Franco Peracchi, 2015. "Ranking scientific journals via latent class models for polytomous item response data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 1025-1049, October.
  8. Genge, Ewa & Bartolucci, Francesco, 2019. "Are attitudes towards immigration changing in Europe? An analysis based on bidimensional latent class IRT models," MPRA Paper 94672, University Library of Munich, Germany.
  9. Vladimir Turetsky & Emil Bashkansky, 2022. "Ordinal response variation of the polytomous Rasch model," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 305-330, December.
  10. Bartolucci, Francesco & Bacci, Silvia & Gnaldi, Michela, 2014. "MultiLCIRT: An R package for multidimensional latent class item response models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 971-985.
  11. Ping Chen & Chun Wang, 2021. "Using EM Algorithm for Finite Mixtures and Reformed Supplemented EM for MIRT Calibration," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 299-326, March.
  12. Michela Gnaldi & Simone Del Sarto, 2018. "Variable Weighting via Multidimensional IRT Models in Composite Indicators Construction," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 1139-1156, April.
  13. Francesco Bartolucci & Valentino Dardanoni & Franco Peracchi, 2013. "Ranking Scientific Journals via Latent Class Models for Polytomous Item Response," EIEF Working Papers Series 1313, Einaudi Institute for Economics and Finance (EIEF), revised May 2013.
  14. Simone Del Sarto & Michela Gnaldi, 2022. "Spare time use: profiles of Italian Millennials (beyond the media hype)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1403-1428, December.
  15. F. Bartolucci & G. Montanari & S. Pandolfi, 2012. "Dimensionality of the Latent Structure and Item Selection Via Latent Class Multidimensional IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 782-802, October.
  16. Silvia Bacci & Bruno Bertaccini & Alessandra Petrucci, 2020. "Beliefs and needs of academic teachers: a latent class analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 597-617, September.
  17. Silvia Bacci & Michela Gnaldi, 2015. "A classification of university courses based on students’ satisfaction: an application of a two-level mixture item response model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 927-940, May.
  18. Ewa Genge, 2021. "LC and LC-IRT Models in the Identification of Polish Households with Similar Perception of Financial Position," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
  19. Francesco Bartolucci & Alessio Farcomeni & Luisa Scaccia, 2017. "A Nonparametric Multidimensional Latent Class IRT Model in a Bayesian Framework," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 952-978, December.
  20. Jules L. Ellis & Klaas Sijtsma, 2023. "A Test to Distinguish Monotone Homogeneity from Monotone Multifactor Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 387-412, June.
  21. Michela Gnaldi & Silvia Bacci & Thiemo Kunze & Samuel Greiff, 2020. "Students’ Complex Problem Solving Profiles," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 469-501, June.
  22. Svend Kreiner & Karl Christensen, 2011. "Item Screening in Graphical Loglinear Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 228-256, April.
  23. Francesco Bartolucci & Ivonne Solis-Trapala, 2010. "Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 725-743, December.
  24. Giorgio d’Agostino & Luca Pieroni, 2019. "Modelling Corruption Perceptions: Evidence from Eastern Europe and Central Asian Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(1), pages 311-341, February.
  25. Ewa Genge & Francesco Bartolucci, 2022. "Are attitudes toward immigration changing in Europe? An analysis based on latent class IRT models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 235-271, June.
  26. Michela Gnaldi, 2017. "A multidimensional IRT approach for dimensionality assessment of standardised students’ tests in mathematics," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1167-1182, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.