IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v178y2015i4p1025-1049.html
   My bibliography  Save this article

Ranking scientific journals via latent class models for polytomous item response data

Author

Listed:
  • Francesco Bartolucci
  • Valentino Dardanoni
  • Franco Peracchi

Abstract

type="main" xml:id="rssa12106-abs-0001"> We propose a model-based strategy for ranking scientific journals starting from a set of observed bibliometric indicators that represent imperfect measures of the unobserved ‘value’ of a journal. After discretizing the available indicators, we estimate an extended latent class model for polytomous item response data and use the estimated model to cluster journals. We illustrate our approach by using the data from the Italian research evaluation exercise that was carried out for the period 2004–2010, focusing on the set of journals that are considered relevant for the subarea statistics and financial mathematics. Using four bibliometric indicators (IF, IF5, AIS and the h-index), some of which are not available for all journals, and the information contained in a set of covariates, we derive a complete ordering of these journals. We show that the methodology proposed is relatively simple to implement, even when the aim is to cluster journals into a small number of ordered groups of a fixed size. We also analyse the robustness of the obtained ranking with respect to different discretization rules.

Suggested Citation

  • Francesco Bartolucci & Valentino Dardanoni & Franco Peracchi, 2015. "Ranking scientific journals via latent class models for polytomous item response data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 1025-1049, October.
  • Handle: RePEc:bla:jorssa:v:178:y:2015:i:4:p:1025-1049
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssa.2015.178.issue-4
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Zimmermann, 2013. "Academic Rankings with RePEc," Econometrics, MDPI, vol. 1(3), pages 1-32, December.
    2. Bertocchi, Graziella & Gambardella, Alfonso & Jappelli, Tullio & Nappi, Carmela A. & Peracchi, Franco, 2015. "Bibliometric evaluation vs. informed peer review: Evidence from Italy," Research Policy, Elsevier, vol. 44(2), pages 451-466.
    3. Chia-Lin Chang & Esfandiar Maasoumi & Michael McAleer, 2016. "Robust Ranking of Journal Quality: An Application to Economics," Econometric Reviews, Taylor & Francis Journals, vol. 35(1), pages 50-97, January.
    4. Chang, C-L. & McAleer, M.J. & Oxley, L., 2010. "Journal Impect Factor Versus Eigenfactor and Article Influence," Econometric Institute Research Papers EI 2010-67, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Ignacio Palacios-Huerta & Oscar Volij, 2004. "The Measurement of Intellectual Influence," Econometrica, Econometric Society, vol. 72(3), pages 963-977, May.
    6. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    7. Francesco Bartolucci, 2007. "A class of multidimensional IRT models for testing unidimensionality and clustering items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 141-157, June.
    8. Johan Bollen & Herbert Van de Sompel & Aric Hagberg & Ryan Chute, 2009. "A Principal Component Analysis of 39 Scientific Impact Measures," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-11, June.
    9. Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Battistin, Erich & Ovidi, Marco, 2017. "Rising Stars," IZA Discussion Papers 11198, Institute of Labor Economics (IZA).
    2. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    3. Erich Battistin & Marco Ovidi, 2022. "Rising Stars: Expert Reviews and Reputational Yardsticks in the Research Excellence Framework," Economica, London School of Economics and Political Science, vol. 89(356), pages 830-848, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes König & David I. Stern & Richard S.J. Tol, 2022. "Confidence Intervals for Recursive Journal Impact Factors," Tinbergen Institute Discussion Papers 22-038/III, Tinbergen Institute.
    2. Francesco Bartolucci & Valentino Dardanoni & Franco Peracchi, 2013. "Ranking Scientific Journals via Latent Class Models for Polytomous Item Response," EIEF Working Papers Series 1313, Einaudi Institute for Economics and Finance (EIEF), revised May 2013.
    3. Lutz Bornmann & Alexander Butz & Klaus Wohlrabe, 2018. "What are the top five journals in economics? A new meta-ranking," Applied Economics, Taylor & Francis Journals, vol. 50(6), pages 659-675, February.
    4. Francis Bloch & Matthew O. Jackson & Pietro Tebaldi, 2023. "Centrality measures in networks," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(2), pages 413-453, August.
    5. Antonio García-Romero & Daniel Santín & Gabriela Sicilia, 2016. "Another brick in the wall: a new ranking of academic journals in Economics using FDH," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 91-101, April.
    6. Erich Battistin & Marco Ovidi, 2022. "Rising Stars: Expert Reviews and Reputational Yardsticks in the Research Excellence Framework," Economica, London School of Economics and Political Science, vol. 89(356), pages 830-848, October.
    7. Carlo D'Ippoliti, 2021. "“Many‐Citedness”: Citations Measure More Than Just Scientific Quality," Journal of Economic Surveys, Wiley Blackwell, vol. 35(5), pages 1271-1301, December.
    8. Hsieh, Chih-Sheng & König, Michael D. & Liu, Xiaodong & Zimmermann, Christian, 2018. "Superstar Economists: Coauthorship Networks and Research Output," IZA Discussion Papers 11916, Institute of Labor Economics (IZA).
    9. Wohlrabe, Klaus, 2016. "Taking the Temperature: A Meta-Ranking of Economics Journals," MPRA Paper 68933, University Library of Munich, Germany.
    10. William C. Horrace & Christopher F. Parmeter, 2017. "Accounting for Multiplicity in Inference on Economics Journal Rankings," Southern Economic Journal, John Wiley & Sons, vol. 84(1), pages 337-347, July.
    11. Payson Steven, 2019. "Cite This Economics Paper! It Is Time for the House of Cards to Fall Down," Open Economics, De Gruyter, vol. 2(1), pages 1-18, January.
    12. David I. Stern, 2013. "Uncertainty Measures for Economics Journal Impact Factors," Journal of Economic Literature, American Economic Association, vol. 51(1), pages 173-189, March.
    13. Sascha Baghestanian & Sergey V. Popov, 2017. "Alma Mat(t)er(s): Determinants of Early Career Success in Economics," Economics Working Papers 17-02, Queen's Management School, Queen's University Belfast.
    14. Chia-Lin Chang & Michael McAleer, 2013. "Ranking Leading Econometrics Journals Using Citations Data from ISI and RePEc," Econometrics, MDPI, vol. 1(3), pages 1-19, November.
    15. Battistin, Erich & Ovidi, Marco, 2017. "Rising Stars," IZA Discussion Papers 11198, Institute of Labor Economics (IZA).
    16. Ewa Genge & Francesco Bartolucci, 2022. "Are attitudes toward immigration changing in Europe? An analysis based on latent class IRT models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 235-271, June.
    17. González-Pereira, Borja & Guerrero-Bote, Vicente P. & Moya-Anegón, Félix, 2010. "A new approach to the metric of journals’ scientific prestige: The SJR indicator," Journal of Informetrics, Elsevier, vol. 4(3), pages 379-391.
    18. McAleer, M.J. & Oláh, J. & Popp, J., 2018. "Pros and Cons of the Impact Factor in a Rapidly Changing Digital World," Econometric Institute Research Papers EI2018-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. László Kóczy & Alexandru Nichifor, 2013. "The intellectual influence of economic journals: quality versus quantity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 52(3), pages 863-884, April.
    20. Lutz Bornmann & Klaus Wohlrabe, 2019. "Normalisation of citation impact in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 841-884, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:178:y:2015:i:4:p:1025-1049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.