IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp971-985.html
   My bibliography  Save this article

MultiLCIRT: An R package for multidimensional latent class item response models

Author

Listed:
  • Bartolucci, Francesco
  • Bacci, Silvia
  • Gnaldi, Michela

Abstract

A class of Item Response Theory (IRT) models for binary and ordinal polytomous items is illustrated and an R package for dealing with these models, named MultiLCIRT, is described. The models at issue extend traditional IRT models allowing for multidimensionality and discreteness of latent traits. They also allow for different parameterizations of the conditional distribution of the response variables given the latent traits, depending on both the type of link function and constraints imposed on the discriminating and difficulty item parameters. These models may be estimated by maximum likelihood via an Expectation–Maximization algorithm, which is implemented in the MultiLCIRT package. Issues related to model selection are also discussed in detail. In order to illustrate this package, two datasets are analyzed: one concerning binary items and referred to the measurement of ability in mathematics and the other one coming from the administration of ordinal polytomous items for the assessment of anxiety and depression. In the first application, aggregation of items in homogeneous groups is illustrated through a model-based hierarchical clustering procedure which is implemented in the proposed package. In the second application, the steps to select a specific model having the best fit in the class of IRT models at issue are described.

Suggested Citation

  • Bartolucci, Francesco & Bacci, Silvia & Gnaldi, Michela, 2014. "MultiLCIRT: An R package for multidimensional latent class item response models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 971-985.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:971-985
    DOI: 10.1016/j.csda.2013.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313002053
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henk Kelderman & Carl Rijkes, 1994. "Loglinear multidimensional IRT models for polytomously scored items," Psychometrika, Springer;The Psychometric Society, vol. 59(2), pages 149-176, June.
    2. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    3. Karl Christensen & Jakob Bjorner & Svend Kreiner & Jørgen Petersen, 2002. "Testing unidimensionality in polytomous Rasch models," Psychometrika, Springer;The Psychometric Society, vol. 67(4), pages 563-574, December.
    4. R. Darrell Bock & Marcus Lieberman, 1970. "Fitting a response model forn dichotomously scored items," Psychometrika, Springer;The Psychometric Society, vol. 35(2), pages 179-197, June.
    5. Herbert Hojtink & Ivo Molenaar, 1997. "A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks," Psychometrika, Springer;The Psychometric Society, vol. 62(2), pages 171-189, June.
    6. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    7. Francesco Bartolucci, 2007. "A class of multidimensional IRT models for testing unidimensionality and clustering items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 141-157, June.
    8. Geofferey Masters, 1985. "A comparison of latent trait and latent class analyses of Likert-type data," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 69-82, March.
    9. Linzer, Drew A. & Lewis, Jeffrey B., 2011. "poLCA: An R Package for Polytomous Variable Latent Class Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i10).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Brusco & Hans-Friedrich Köhn & Douglas Steinley, 2015. "An Exact Method for Partitioning Dichotomous Items Within the Framework of the Monotone Homogeneity Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 949-967, December.
    2. Genge, Ewa & Bartolucci, Francesco, 2019. "Are attitudes towards immigration changing in Europe? An analysis based on bidimensional latent class IRT models," MPRA Paper 94672, University Library of Munich, Germany.
    3. Favaro, Donata & Sciulli, Dario & Bartolucci, Francesco, 2020. "Primary-school class composition and the development of social capital," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    4. Chiara Dal Bianco & Omar Paccagnella & Roberta Varriale, 2016. "A multilevel latent class analysis of the purchasing channels among European consumers," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 293-309, December.
    5. Ping Chen & Chun Wang, 2021. "Using EM Algorithm for Finite Mixtures and Reformed Supplemented EM for MIRT Calibration," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 299-326, March.
    6. Michela Gnaldi & Simone Del Sarto, 2018. "Variable Weighting via Multidimensional IRT Models in Composite Indicators Construction," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 1139-1156, April.
    7. Francesco Bartolucci & Valentino Dardanoni & Franco Peracchi, 2013. "Ranking Scientific Journals via Latent Class Models for Polytomous Item Response," EIEF Working Papers Series 1313, Einaudi Institute for Economics and Finance (EIEF), revised May 2013.
    8. Silvia Bacci & Michela Gnaldi, 2015. "A classification of university courses based on students’ satisfaction: an application of a two-level mixture item response model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 927-940, May.
    9. Ewa Genge, 2021. "LC and LC-IRT Models in the Identification of Polish Households with Similar Perception of Financial Position," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    10. Francesco Bartolucci & Alessio Farcomeni & Luisa Scaccia, 2017. "A Nonparametric Multidimensional Latent Class IRT Model in a Bayesian Framework," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 952-978, December.
    11. Leonard Paas & Tammo Bijmolt & Jeroen Vermunt, 2015. "Long-term developments of respondent financial product portfolios in the EU: a multilevel latent class analysis," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 249-262, August.
    12. Ewa Genge & Francesco Bartolucci, 2022. "Are attitudes toward immigration changing in Europe? An analysis based on latent class IRT models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 235-271, June.
    13. Luca Brusa & Francesco Bartolucci & Fulvia Pennoni, 2023. "Tempered expectation-maximization algorithm for the estimation of discrete latent variable models," Computational Statistics, Springer, vol. 38(3), pages 1391-1424, September.
    14. Michela Gnaldi, 2017. "A multidimensional IRT approach for dimensionality assessment of standardised students’ tests in mathematics," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1167-1182, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salzberger, Thomas & Newton, Fiona J. & Ewing, Michael T., 2014. "Detecting gender item bias and differential manifest response behavior: A Rasch-based solution," Journal of Business Research, Elsevier, vol. 67(4), pages 598-607.
    2. Genge, Ewa & Bartolucci, Francesco, 2019. "Are attitudes towards immigration changing in Europe? An analysis based on bidimensional latent class IRT models," MPRA Paper 94672, University Library of Munich, Germany.
    3. Francesco Bartolucci & Alessio Farcomeni & Luisa Scaccia, 2017. "A Nonparametric Multidimensional Latent Class IRT Model in a Bayesian Framework," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 952-978, December.
    4. Anders Skrondal & Sophia Rabe-Hesketh, 2022. "The Role of Conditional Likelihoods in Latent Variable Modeling," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 799-834, September.
    5. Vladimir Turetsky & Emil Bashkansky, 2022. "Ordinal response variation of the polytomous Rasch model," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 305-330, December.
    6. Javier Revuelta, 2008. "The generalized Logit-Linear Item Response Model for Binary-Designed Items," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 385-405, September.
    7. Bas Hemker & L. Andries van der Ark & Klaas Sijtsma, 2001. "On measurement properties of continuation ratio models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 487-506, December.
    8. David Hessen, 2012. "Fitting and Testing Conditional Multinormal Partial Credit Models," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 693-709, October.
    9. Ewa Genge, 2021. "LC and LC-IRT Models in the Identification of Polish Households with Similar Perception of Financial Position," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    10. Karl Christensen & Jakob Bjorner & Svend Kreiner & Jørgen Petersen, 2002. "Testing unidimensionality in polytomous Rasch models," Psychometrika, Springer;The Psychometric Society, vol. 67(4), pages 563-574, December.
    11. P. A. Ferrari & S. Salini, 2008. "Measuring Service Quality: The Opinion of Europeans about Utilities," Working Papers 2008.36, Fondazione Eni Enrico Mattei.
    12. Chang, Hsin-Li & Yang, Cheng-Hua, 2008. "Explore airlines’ brand niches through measuring passengers’ repurchase motivation—an application of Rasch measurement," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 105-112.
    13. Ivana Bassi & Matteo Carzedda & Enrico Gori & Luca Iseppi, 2022. "Rasch analysis of consumer attitudes towards the mountain product label," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-25, December.
    14. Antonio Caronni & Marina Ramella & Pietro Arcuri & Claudia Salatino & Lucia Pigini & Maurizio Saruggia & Chiara Folini & Stefano Scarano & Rosa Maria Converti, 2023. "The Rasch Analysis Shows Poor Construct Validity and Low Reliability of the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST 2.0) Questionnaire," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    15. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    16. Curt Hagquist & Raili Välimaa & Nina Simonsen & Sakari Suominen, 2017. "Differential Item Functioning in Trend Analyses of Adolescent Mental Health – Illustrative Examples Using HBSC-Data from Finland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 673-691, September.
    17. Francesco Bartolucci & Ivonne Solis-Trapala, 2010. "Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 725-743, December.
    18. Rasmus A. X. Persson, 2023. "Theoretical evaluation of partial credit scoring of the multiple-choice test item," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 143-161, August.
    19. Chang, Hsin-Li & Wu, Shun-Cheng, 2008. "Exploring the vehicle dependence behind mode choice: Evidence of motorcycle dependence in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 307-320, February.
    20. Jesper Tijmstra & Maria Bolsinova, 2019. "Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 846-869, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:971-985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.