IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/94672.html
   My bibliography  Save this paper

Are attitudes towards immigration changing in Europe? An analysis based on bidimensional latent class IRT models

Author

Listed:
  • Genge, Ewa
  • Bartolucci, Francesco

Abstract

We analyse the changing attitudes towards immigration in EU host countries in the last few years (2010-2016) on the basis of the European Social Survey data. These data are collected by the administration of a questionnaire made of items concerning different aspects related to the immigration phenomenon. For this analysis we rely on a class of item response theory models that allow for: (i) multidimensionality; (ii) discreteness of the latent trait distribution; (iii) time-constant and time-varying covariates; and (iv) sample weights. Through these models we find latent classes of Europeans with similar levels of immigration acceptance, we study the effect of different socio-economic covariates on the probability of belonging to these classes, and we assess the item characteristics. In this way we show which countries tend to be more or less positive towards immigration and the temporal dynamics of the phenomenon under study.

Suggested Citation

  • Genge, Ewa & Bartolucci, Francesco, 2019. "Are attitudes towards immigration changing in Europe? An analysis based on bidimensional latent class IRT models," MPRA Paper 94672, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:94672
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/94672/1/MPRA_paper_94672.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yvonni Markaki & Simonetta Longhi, 2012. "What Determines Attitudes to Immigration in European Countries? An Analysis at the Regional Level," RF Berlin - CReAM Discussion Paper Series 1233, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
    2. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    3. Bartolucci, Francesco & Bacci, Silvia & Gnaldi, Michela, 2014. "MultiLCIRT: An R package for multidimensional latent class item response models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 971-985.
    4. Francesco Bartolucci, 2007. "A class of multidimensional IRT models for testing unidimensionality and clustering items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 141-157, June.
    5. Sides, John & Citrin, Jack, 2007. "European Opinion About Immigration: The Role of Identities, Interests and Information," British Journal of Political Science, Cambridge University Press, vol. 37(3), pages 477-504, July.
    6. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewa Genge, 2021. "LC and LC-IRT Models in the Identification of Polish Households with Similar Perception of Financial Position," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    2. Ewa Genge & Francesco Bartolucci, 2022. "Are attitudes toward immigration changing in Europe? An analysis based on latent class IRT models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 235-271, June.
    3. Silvia Bacci & Michela Gnaldi, 2015. "A classification of university courses based on students’ satisfaction: an application of a two-level mixture item response model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 927-940, May.
    4. Bartolucci, Francesco & Bacci, Silvia & Gnaldi, Michela, 2014. "MultiLCIRT: An R package for multidimensional latent class item response models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 971-985.
    5. Vladimir Turetsky & Emil Bashkansky, 2022. "Ordinal response variation of the polytomous Rasch model," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 305-330, December.
    6. Chang, Hsin-Li & Yang, Cheng-Hua, 2008. "Explore airlines’ brand niches through measuring passengers’ repurchase motivation—an application of Rasch measurement," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 105-112.
    7. Ivana Bassi & Matteo Carzedda & Enrico Gori & Luca Iseppi, 2022. "Rasch analysis of consumer attitudes towards the mountain product label," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-25, December.
    8. Michela Gnaldi & Simone Del Sarto, 2018. "Variable Weighting via Multidimensional IRT Models in Composite Indicators Construction," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 1139-1156, April.
    9. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    10. Curt Hagquist & Raili Välimaa & Nina Simonsen & Sakari Suominen, 2017. "Differential Item Functioning in Trend Analyses of Adolescent Mental Health – Illustrative Examples Using HBSC-Data from Finland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 673-691, September.
    11. Chang, Hsin-Li & Wu, Shun-Cheng, 2008. "Exploring the vehicle dependence behind mode choice: Evidence of motorcycle dependence in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 307-320, February.
    12. Jesper Tijmstra & Maria Bolsinova, 2019. "Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 846-869, September.
    13. Salzberger, Thomas & Koller, Monika, 2013. "Towards a new paradigm of measurement in marketing," Journal of Business Research, Elsevier, vol. 66(9), pages 1307-1317.
    14. Richard N McNeely & Salissou Moutari & Samuel Arba-Mosquera & Shwetabh Verma & Jonathan E Moore, 2018. "An alternative application of Rasch analysis to assess data from ophthalmic patient-reported outcome instruments," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-32, June.
    15. Francesca DE BATTISTI & Giovanna NICOLINI & Silvia SALINI, 2008. "Methodological overview of Rasch model and application in customer satisfaction survey data," Departmental Working Papers 2008-04, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    16. Kuan-Yu Jin & Yi-Jhen Wu & Hui-Fang Chen, 2022. "A New Multiprocess IRT Model With Ideal Points for Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 297-321, June.
    17. Mª Ángeles Cea D’Ancona, 2016. "Immigration as a Threat: Explaining the Changing Pattern of Xenophobia in Spain," Journal of International Migration and Integration, Springer, vol. 17(2), pages 569-591, May.
    18. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    19. Piotr Tarka, 2013. "Model of latent profile factor analysis for ordered categorical data," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 171-182, March.
    20. Xiaohui Zheng & Sophia Rabe-Hesketh, 2007. "Estimating parameters of dichotomous and ordinal item response models with gllamm," Stata Journal, StataCorp LP, vol. 7(3), pages 313-333, September.

    More about this item

    Keywords

    European Social Survey; Expectation-Maximisation algorithm; Item response theory; Discrete latent variables;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • F22 - International Economics - - International Factor Movements and International Business - - - International Migration

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:94672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.