IDEAS home Printed from https://ideas.repec.org/r/spr/jogath/v40y2011i1p87-110.html
   My bibliography  Save this item

Harsanyi power solutions for graph-restricted games

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lange, Fabien & Grabisch, Michel, 2009. "Values on regular games under Kirchhoff's laws," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 322-340, November.
  2. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "Weighted component fairness for forest games," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 144-151.
  3. Zhang, Guang, 2018. "Allocation rules for cooperative games with graph and hypergraph communication structure," Other publications TiSEM 10431594-5325-4503-bdb0-0, Tilburg University, School of Economics and Management.
  4. Anna Khmelnitskaya & Gerard van der Laan & Dolf Talman, 2016. "Centrality Rewarding Shapley and Myerson Values for Undirected Graph Games," Tinbergen Institute Discussion Papers 16-070/II, Tinbergen Institute.
  5. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J., 2005. "The Component Fairness Solution for Cycle-Free Graph Games," Discussion Paper 2005-127, Tilburg University, Center for Economic Research.
  6. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
  7. Selçuk, O., 2014. "Structural restrictions in cooperation," Other publications TiSEM 0da8d0d3-08c2-4f86-92a1-3, Tilburg University, School of Economics and Management.
  8. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "The proportional Shapley value and applications," Games and Economic Behavior, Elsevier, vol. 108(C), pages 93-112.
  9. Talman, A.J.J. & Yamamoto, Y., 2007. "Games With Limited Communication Structure," Other publications TiSEM e5f3ebff-9aea-4023-9525-b, Tilburg University, School of Economics and Management.
  10. Kamijo, Yoshio, 2009. "A linear proportional effort allocation rule," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 341-353, November.
  11. Demuynck, Thomas & Rock, Bram De & Ginsburgh, Victor, 2016. "The transfer paradox in welfare space," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 1-4.
  12. Belau, Julia, 2016. "Outside option values for network games," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 76-86.
  13. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
  14. Encarnaciön Algaba & Sylvain Béal & Eric Rémila & Phillippe Solal, 2018. "Harsanyi power solutions for cooperative games on voting structures," Working Papers 2018-05, CRESE.
  15. C. Manuel & E. Ortega & M. del Pozo, 2023. "Marginality and the position value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 459-474, July.
  16. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
  17. Shi, Jilei & Shan, Erfang, 2020. "Weighted component-wise solutions for graph games," Economics Letters, Elsevier, vol. 192(C).
  18. Pierre Dehez, 2017. "On Harsanyi Dividends and Asymmetric Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-36, September.
  19. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
  20. Heinz, S. & Krumke, S.O. & Megow, N. & Rambau, J. & Tuscherer, A. & Vredeveld, T., 2005. "The online target date assignment problem," Research Memorandum 056, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  21. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
  22. Elena C. Gavilán & Conrado M. Manuel & René Van Den Brink, 2022. "A Family of Position Values for Directed Communication Situations," Mathematics, MDPI, vol. 10(8), pages 1-19, April.
  23. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
  24. Özer Selçuk & Takamasa Suzuki, 2023. "Comparable axiomatizations of the average tree solution and the Myerson value," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(2), pages 333-362, June.
  25. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.
  26. Encarnacion Algaba & Jesus Mario Bilbao & Rene van den Brink & Jorge J. Lopez, 2011. "The Myerson Value and Superfluous Supports in Union Stable Systems," Tinbergen Institute Discussion Papers 11-127/1, Tinbergen Institute.
  27. Napel, Stefan & Nohn, Andreas & Alonso-Meijide, José Maria, 2012. "Monotonicity of power in weighted voting games with restricted communication," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 247-257.
  28. E. Algaba & J. M. Bilbao & R. Brink & J. J. López, 2012. "The Myerson Value and Superfluous Supports in Union Stable Systems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 650-668, November.
  29. Zhengxing Zou & Qiang Zhang, 2018. "Harsanyi power solution for games with restricted cooperation," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 26-47, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.