IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1235-d790092.html
   My bibliography  Save this article

A Family of Position Values for Directed Communication Situations

Author

Listed:
  • Elena C. Gavilán

    (Faculty of Statistics, Complutense University of Madrid, Puerta de Hierro, 1, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • Conrado M. Manuel

    (Faculty of Statistics, Complutense University of Madrid, Puerta de Hierro, 1, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • René Van Den Brink

    (Department of Economics, Vrije University Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
    These authors contributed equally to this work.)

Abstract

In this paper, we define a family of values for directed communication situations that are inspired by the position value. We use the concept of directed communication and related connectedness in directed graphs, under which a coalition of players in a game can only cooperate if these players form a directed path in a directed communication graph. By defining an arc game, which assesses the worth of coalitions of (directed) arcs in generating worth, we allocate the Shapley value payoff of each arc over the nodes incident with this arc, where we allow the head and tail to obtain a different share in this arc payoff. However, the way that the arc payoff is shared over its head and tail is uniform over all arcs. We characterize these values by connection efficiency and a modification of the classical balanced link contributions property for undirected communication situations, discriminating between the roles of the nodes as head and tail.

Suggested Citation

  • Elena C. Gavilán & Conrado M. Manuel & René Van Den Brink, 2022. "A Family of Position Values for Directed Communication Situations," Mathematics, MDPI, vol. 10(8), pages 1-19, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1235-:d:790092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Slikker, 2005. "A characterization of the position value," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(4), pages 505-514, November.
    2. Ghintran, Amandine, 2013. "Weighted position values," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 157-163.
    3. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    4. Gomez, Daniel & Gonzalez-Aranguena, Enrique & Manuel, Conrado & Owen, Guillermo & del Pozo, Monica & Tejada, Juan, 2003. "Centrality and power in social networks: a game theoretic approach," Mathematical Social Sciences, Elsevier, vol. 46(1), pages 27-54, August.
    5. René Brink & Gerard Laan & Vitaly Pruzhansky, 2011. "Harsanyi power solutions for graph-restricted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 87-110, February.
    6. Xiaotie Deng & Christos H. Papadimitriou, 1994. "On the Complexity of Cooperative Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 19(2), pages 257-266, May.
    7. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Manuel & E. Ortega & M. del Pozo, 2023. "Marginality and the position value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 459-474, July.
    2. Sridhar Mandyam & Usha Sridhar, 2017. "DON and Shapley Value for Allocation among Cooperating Agents in a Network: Conditions for Equivalence," Studies in Microeconomics, , vol. 5(2), pages 143-161, December.
    3. Kamijo, Yoshio, 2009. "A linear proportional effort allocation rule," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 341-353, November.
    4. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
    5. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    6. Navarro, Florian, 2020. "The center value: A sharing rule for cooperative games on acyclic graphs," Mathematical Social Sciences, Elsevier, vol. 105(C), pages 1-13.
    7. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    8. Julia Belau, 2018. "The class of ASN-position values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 50(1), pages 65-99, January.
    9. René Brink & Gerard Laan & Vitaly Pruzhansky, 2011. "Harsanyi power solutions for graph-restricted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 87-110, February.
    10. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    11. Napel, Stefan & Nohn, Andreas & Alonso-Meijide, José Maria, 2012. "Monotonicity of power in weighted voting games with restricted communication," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 247-257.
    12. Talman, A.J.J. & Yamamoto, Y., 2007. "Games With Limited Communication Structure," Discussion Paper 2007-19, Tilburg University, Center for Economic Research.
    13. Manuel, C. & Ortega, E. & del Pozo, M., 2020. "Marginality and Myerson values," European Journal of Operational Research, Elsevier, vol. 284(1), pages 301-312.
    14. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.
    15. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    16. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    17. Ghintran, Amandine, 2013. "Weighted position values," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 157-163.
    18. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J., 2005. "The component fairness solution for cycle-free graph games," Research Memorandum 057, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    19. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    20. van den Brink, René & Khmelnitskaya, Anna & van der Laan, Gerard, 2012. "An efficient and fair solution for communication graph games," Economics Letters, Elsevier, vol. 117(3), pages 786-789.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1235-:d:790092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.