IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20110127.html
   My bibliography  Save this paper

The Myerson Value and Superfluous Supports in Union Stable Systems

Author

Listed:
  • Encarnacion Algaba

    (University of Sevilla)

  • Jesus Mario Bilbao

    (University of Sevilla)

  • Rene van den Brink

    (VU University Amsterdam)

  • Jorge J. Lopez

    (University of Sevilla)

Abstract

This discussion paper resulted in a publication in the 'Journal of Optimization Theory and Applications' , 2012, 155, 650-668. Cooperative games with partial cooperation cover a wider rank of real world situations than the classic model of cooperative games where every subset of a set of agents can form a coalition to execute the game. In this paper, the set of feasible coalitions which models the partial cooperation will be given by a union stable system. These systems contain, as particular cases, the communication situations and the permission structures, which are well-known both from a theoretical and applied point of view. Moreover, union stable systems are a natural framework for many other economic situations that arise in practice and which can not be modelled by these subsystems. In this paper, the goal is to make clear that there exists a close relationship between the Myerson value and the so-called conference game which player set consists of the supports of the union stable system. For that, we first analyze the relation between the restricted game and the conference game to establish later which effects a union stable system has on certain desirable properties of these games. Using the superfluous support property, defined through the conference game, new characterizations for the Myerson value are given in this context.

Suggested Citation

  • Encarnacion Algaba & Jesus Mario Bilbao & Rene van den Brink & Jorge J. Lopez, 2011. "The Myerson Value and Superfluous Supports in Union Stable Systems," Tinbergen Institute Discussion Papers 11-127/1, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20110127
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/11127.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van den Nouweland, Anne & Borm, Peter & Tijs, Stef, 1992. "Allocation Rules for Hypergraph Communication Situations," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 255-268.
    2. Faigle, U. & Grabisch, M. & Heyne, M., 2010. "Monge extensions of cooperation and communication structures," European Journal of Operational Research, Elsevier, vol. 206(1), pages 104-110, October.
    3. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    4. E. Algaba & J. M. Bilbao & J. J. López, 2004. "The position value in communication structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 465-477, July.
    5. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
    6. René Brink & Gerard Laan & Vitaly Pruzhansky, 2011. "Harsanyi power solutions for graph-restricted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 87-110, February.
    7. Potters, Jos & Reijnierse, Hans, 1995. "Gamma-Component Additive Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 49-56.
    8. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2000. "The position value for union stable systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 221-236, November.
    9. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    10. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    11. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Algaba & J. M. Bilbao & R. Brink & J. J. López, 2012. "The Myerson Value and Superfluous Supports in Union Stable Systems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 650-668, November.
    2. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    3. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    4. Encarnaciön Algaba & Sylvain Béal & Eric Rémila & Phillippe Solal, 2018. "Harsanyi power solutions for cooperative games on voting structures," Working Papers 2018-05, CRESE.
    5. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.
    6. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    7. Bas Dietzenbacher & Peter Borm & Ruud Hendrickx, 2017. "Decomposition of network communication games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 407-423, June.
    8. Takashi Ui & Hiroyuki Kojima & Atsushi Kajii, 2011. "The Myerson value for complete coalition structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 427-443, December.
    9. Encarnación Algaba & René Brink & Chris Dietz, 2018. "Network Structures with Hierarchy and Communication," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 265-282, October.
    10. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2021. "The average tree value for hypergraph games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 437-460, December.
    11. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    12. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    13. Algaba, A. & Bilbao, J.M. & Borm, P.E.M., 1999. "The Myerson Value for Union Stable Systems," Other publications TiSEM 022b6f46-8f76-4bb3-acab-3, Tilburg University, School of Economics and Management.
    14. Erfang Shan & Guang Zhang & Xiaokang Shan, 2018. "The degree value for games with communication structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 857-871, September.
    15. Daniel Li Li & Erfang Shan, 2021. "Cooperative games with partial information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 297-309, March.
    16. Zhengxing Zou & Qiang Zhang, 2018. "Harsanyi power solution for games with restricted cooperation," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 26-47, January.
    17. C. Manuel & E. Ortega & M. del Pozo, 2023. "Marginality and the position value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 459-474, July.
    18. Xianghui Li & Bin Jiang & Yang Li, 2024. "The allowable value for cooperative games with restricted permutations," Annals of Operations Research, Springer, vol. 340(2), pages 943-959, September.
    19. Alexandre Skoda, 2016. "Convexity of Network Restricted Games Induced by Minimum Partitions," Documents de travail du Centre d'Economie de la Sorbonne 16019, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    20. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2000. "The position value for union stable systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 221-236, November.

    More about this item

    Keywords

    Conference game; restricted game; union stable system; Myerson value; superfluous support property;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20110127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.