My bibliography
Save this item
The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
- Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2013. "Clustering and classification via cluster-weighted factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 5-40, March.
- Andrés Romeu, 2011. "Cluster Detection in Laboratory Auction Data: A Model-Based Approach," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 58(4), pages 473-488, December.
- Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
- Schlattmann, Peter, 2003. "Estimating the number of components in a finite mixture model: the special case of homogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 441-451, January.
- Wei, Yuhong & Tang, Yang & McNicholas, Paul D., 2019. "Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 18-41.
- Miloslavsky, Maja & van der Laan, Mark J., 2003. "Fitting of mixtures with unspecified number of components using cross validation distance estimate," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 413-428, January.
- Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "A mixture of SDB skew-t factor analyzers," Econometrics and Statistics, Elsevier, vol. 3(C), pages 160-168.
- Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
- Cristina Tortora & Brian C. Franczak & Ryan P. Browne & Paul D. McNicholas, 2019. "A Mixture of Coalesced Generalized Hyperbolic Distributions," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 26-57, April.
- Keefe Murphy & Thomas Brendan Murphy, 2020. "Gaussian parsimonious clustering models with covariates and a noise component," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 293-325, June.
- Browne, Ryan P., 2022. "Revitalizing the multivariate elliptical leptokurtic-normal distribution and its application in model-based clustering," Statistics & Probability Letters, Elsevier, vol. 190(C).
- O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire, 2012. "Computational aspects of fitting mixture models via the expectation–maximization algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3843-3864.
- Nam-Hwui Kim & Ryan Browne, 2019. "Subspace clustering for the finite mixture of generalized hyperbolic distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 641-661, September.
- Markus Thamerus, 2003. "Fitting a Mixture Distribution to a Variable Subject to Heteroscedastie Measurement Errors," Computational Statistics, Springer, vol. 18(1), pages 1-17, March.
- Shaikh Mateen & McNicholas Paul D & Desmond Anthony F, 2010. "A Pseudo-EM Algorithm for Clustering Incomplete Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-17, March.
- Bohning, Dankmar & Seidel, Wilfried, 2003. "Editorial: recent developments in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 349-357, January.
- McNicholas, P.D. & Murphy, T.B. & McDaid, A.F. & Frost, D., 2010. "Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 711-723, March.
- Andrea Cappozzo & Francesca Greselin & Thomas Brendan Murphy, 2020. "A robust approach to model-based classification based on trimming and constraints," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 327-354, June.
- Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
- Wedel, M. & Hofstede, F. ter & Steenkamp, J.-B.E.M., 1997. "Mixture model analysis of complex samples," Research Report 97B03, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
- Ryan P. Browne & Luca Bagnato & Antonio Punzo, 2024. "Parsimony and parameter estimation for mixtures of multivariate leptokurtic-normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 597-625, September.
- Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
- Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering of multiply censored data via mixtures of t factor analyzers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 22-53, March.
- Jason Hou-Liu & Ryan P. Browne, 2022. "Factor and hybrid components for model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 373-398, June.
- Wang, Wan-Lun & Fan, Tsai-Hung, 2010. "ECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errors," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1328-1341, May.
- Morris, Katherine & McNicholas, Paul D., 2016. "Clustering, classification, discriminant analysis, and dimension reduction via generalized hyperbolic mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 133-150.
- Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
- Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
- Daeyoung Kim & Bruce Lindsay, 2015. "Empirical identifiability in finite mixture models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 745-772, August.
- Kim, Daeyoung & Seo, Byungtae, 2014. "Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 100-120.
- Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
- Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
- Daouk, Hazem & Guo, Jie Qun, 2003. "Switching Asymmetric GARCH and Options on a Volatility Index," Working Papers 127187, Cornell University, Department of Applied Economics and Management.
- Ranalli, Monia & Rocci, Roberto, 2017. "Mixture models for mixed-type data through a composite likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 87-102.
- Seo, Byungtae & Kim, Daeyoung, 2012. "Root selection in normal mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2454-2470.
- Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2015. "Cluster-weighted $$t$$ t -factor analyzers for robust model-based clustering and dimension reduction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 623-649, November.
- Sanjeena Subedi & Paul D. McNicholas, 2021. "A Variational Approximations-DIC Rubric for Parameter Estimation and Mixture Model Selection Within a Family Setting," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 89-108, April.
- Naderi, Mehrdad & Hung, Wen-Liang & Lin, Tsung-I & Jamalizadeh, Ahad, 2019. "A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum–Saunders distributions and its application to extrasolar planets," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 126-138.
- Tyler Roick & Dimitris Karlis & Paul D. McNicholas, 2021. "Clustering discrete-valued time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 209-229, March.
- Keefe Murphy & T. Brendan Murphy & Raffaella Piccarreta & I. Claire Gormley, 2021. "Clustering longitudinal life‐course sequences using mixtures of exponential‐distance models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1414-1451, October.
- Andrews, Jeffrey L. & McNicholas, Paul D. & Subedi, Sanjeena, 2011. "Model-based classification via mixtures of multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 520-529, January.
- Ingrassia, Salvatore & Minotti, Simona C. & Punzo, Antonio, 2014. "Model-based clustering via linear cluster-weighted models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 159-182.
- Wang, Wan-Lun, 2015. "Mixtures of common t-factor analyzers for modeling high-dimensional data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 223-235.
- Ahad Jamalizadeh & Tsung-I Lin, 2017. "A general class of scale-shape mixtures of skew-normal distributions: properties and estimation," Computational Statistics, Springer, vol. 32(2), pages 451-474, June.
- Lin, Tsung-I, 2014. "Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 183-195.
- Tang, Yang & Browne, Ryan P. & McNicholas, Paul D., 2015. "Model based clustering of high-dimensional binary data," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 84-101.
- Papastamoulis, Panagiotis & Martin-Magniette, Marie-Laure & Maugis-Rabusseau, Cathy, 2016. "On the estimation of mixtures of Poisson regression models with large number of components," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 97-106.
- Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2014. "Mixtures of skew-t factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 326-335.
- Wilfried Seidel & Karl Mosler & Manfred Alker, 2000. "A Cautionary Note on Likelihood Ratio Tests in Mixture Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 481-487, September.
- Gerhard Arminger & Petra Stein, 1997. "Finite Mixtures of Covariance Structure Models with Regressors," Sociological Methods & Research, , vol. 26(2), pages 148-182, November.
- Cristina Tortora & Paul D. McNicholas & Ryan P. Browne, 2016. "A mixture of generalized hyperbolic factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 423-440, December.
- repec:dgr:rugsom:97b03 is not listed on IDEAS
- Wan-Lun Wang & Tsung-I Lin, 2023. "Model-based clustering via mixtures of unrestricted skew normal factor analyzers with complete and incomplete data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 787-817, September.
- Paolo Berta & Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini, 2016. "Multilevel cluster-weighted models for the evaluation of hospitals," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 275-292, December.
- Gerhard Tutz & Micha Schneider & Maria Iannario & Domenico Piccolo, 2017. "Mixture models for ordinal responses to account for uncertainty of choice," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 281-305, June.
- O'Donnell, Christopher J., 2006. "Some Econometric Options For Dealing With Unknown Functional Form," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 137787, Australian Agricultural and Resource Economics Society.
- Naderi, Mehrdad & Hashemi, Farzane & Bekker, Andriette & Jamalizadeh, Ahad, 2020. "Modeling right-skewed financial data streams: A likelihood inference based on the generalized Birnbaum–Saunders mixture model," Applied Mathematics and Computation, Elsevier, vol. 376(C).
- Edoardo Otranto & Giampiero Gallo, 2002.
"A Nonparametric Bayesian Approach To Detect The Number Of Regimes In Markov Switching Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 477-496.
- Edoardo Otranto & Giampiero M. Gallo, 2001. "A Nonparametric Bayesian Approach to Detect the Number of Regimes in Markov Switching Models," Econometrics Working Papers Archive wp2001_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Vrbik, Irene & McNicholas, Paul D., 2014. "Parsimonious skew mixture models for model-based clustering and classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 196-210.