IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v18y2003i1d10.1007_s001800300129.html
   My bibliography  Save this article

Fitting a Mixture Distribution to a Variable Subject to Heteroscedastie Measurement Errors

Author

Listed:
  • Markus Thamerus

    (University of Munich)

Abstract

Summary In a structural errors-in-variables model the true regressors are treated as stochastic variables that can only be measured with an additional error. Therefore the distribution of the latent predictor variables and the distribution of the measurement errors play an important role in the analysis of such models. In this article the conventional assumptions of normality for these distributions are extended in two directions. The distribution of the true regressor variable is assumed to be a mixture of normal distributions and the measurement errors are again taken to be normally distributed but the error variances are allowed to be heteroscedastie. It is shown how an EM algorithm solely based on the error-prone observations of the latent variable can be used to find approximate ML estimates of the distribution parameters of the mixture. The procedure is illustrated by a Swiss data set that consists of regional radon measurements. The mean concentrations of the regions serve as proxies for the true regional averages of radon. The different variability of the measurements within the regions motivated this approach.

Suggested Citation

  • Markus Thamerus, 2003. "Fitting a Mixture Distribution to a Variable Subject to Heteroscedastie Measurement Errors," Computational Statistics, Springer, vol. 18(1), pages 1-17, March.
  • Handle: RePEc:spr:compst:v:18:y:2003:i:1:d:10.1007_s001800300129
    DOI: 10.1007/s001800300129
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s001800300129
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s001800300129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kiefer, Nicholas M, 1978. "Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model," Econometrica, Econometric Society, vol. 46(2), pages 427-434, March.
    2. Dankmar Böhning & Ekkehart Dietz & Rainer Schaub & Peter Schlattmann & Bruce Lindsay, 1994. "The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(2), pages 373-388, June.
    3. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
    2. Carroll, Raymond J. & Delaigle, Aurore & Hall, Peter, 2009. "Nonparametric Prediction in Measurement Error Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 993-1003.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjeena Subedi & Paul D. McNicholas, 2021. "A Variational Approximations-DIC Rubric for Parameter Estimation and Mixture Model Selection Within a Family Setting," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 89-108, April.
    2. Georgiev, Iliyan, 2010. "Model-based asymptotic inference on the effect of infrequent large shocks on cointegrated variables," Journal of Econometrics, Elsevier, vol. 158(1), pages 37-50, September.
    3. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    4. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    5. Daeyoung Kim & Bruce Lindsay, 2015. "Empirical identifiability in finite mixture models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 745-772, August.
    6. Yang, Qing-Qing & Ching, Wai-Ki & Gu, Jia-Wen & Siu, Tak-Kuen, 2018. "Market-making strategy with asymmetric information and regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 408-433.
    7. Houda Rharrabti Zaid, 2015. "Transmission du stress financier de la zone euro aux Pays de l’Europe Centrale et Orientale," EconomiX Working Papers 2015-37, University of Paris Nanterre, EconomiX.
    8. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    9. Morduch, Jonathan J. & Stern, Hal S., 1997. "Using mixture models to detect sex bias in health outcomes in Bangladesh," Journal of Econometrics, Elsevier, vol. 77(1), pages 259-276, March.
    10. Aldo M. Garay & Francyelle L. Medina & Suelem Torres de Freitas & Víctor H. Lachos, 2024. "Bayesian analysis of linear regression models with autoregressive symmetrical errors and incomplete data," Statistical Papers, Springer, vol. 65(9), pages 5649-5690, December.
    11. N. T. Longford & Pierpaolo D'Urso, 2011. "Mixture models with an improper component," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2511-2521, January.
    12. Oczkowski, Edward, 1998. "An econometric analysis of the bilateral monopoly model," Economic Modelling, Elsevier, vol. 16(1), pages 53-69, January.
    13. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    14. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    15. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    16. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    17. Francisco Richter & Bart Haegeman & Rampal S. Etienne & Ernst C. Wit, 2020. "Introducing a general class of species diversification models for phylogenetic trees," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 261-274, August.
    18. Nalini Ravishanker & Dipak K. Dey, 2000. "Multivariate Survival Models with a Mixture of Positive Stable Frailties," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 293-308, September.
    19. Chatterjee, Somnath & Jobst, Andreas, 2019. "Market-implied systemic risk and shadow capital adequacy," Bank of England working papers 823, Bank of England.
    20. Yasutomo Murasawa, 2020. "Measuring public inflation perceptions and expectations in the UK," Empirical Economics, Springer, vol. 59(1), pages 315-344, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:18:y:2003:i:1:d:10.1007_s001800300129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.