ECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errors
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dankmar Böhning & Ekkehart Dietz & Rainer Schaub & Peter Schlattmann & Bruce Lindsay, 1994. "The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(2), pages 373-388, June.
- Chi, Eric M. & Reinsel, Gregory C., 1991. "Asymptotic properties of the score test for autocorrelation in a random effects with AR(1) errors model," Statistics & Probability Letters, Elsevier, vol. 11(5), pages 453-457, May.
- Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
- Lin, Tsung I. & Ho, Hsiu J., 2008. "A simplified approach to inverting the autocovariance matrix of a general ARMA(p,q) process," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 36-41, January.
- Barndorff-Nielsen, O. & Schou, G., 1973. "On the parametrization of autoregressive models by partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 3(4), pages 408-419, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hsiao, Cheng & Zhou, Qiankun, 2015. "Statistical inference for panel dynamic simultaneous equations models," Journal of Econometrics, Elsevier, vol. 189(2), pages 383-396.
- M. Taavoni & M. Arashi, 2021. "Kernel estimation in semiparametric mixed effect longitudinal modeling," Statistical Papers, Springer, vol. 62(3), pages 1095-1116, June.
- Wang, Wan-Lun & Fan, Tsai-Hung, 2012. "Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 300-310.
- Hong-Yan Jiang & Rong-Xian Yue, 2019. "Pseudo-Bayesian D-optimal designs for longitudinal Poisson mixed models with correlated errors," Computational Statistics, Springer, vol. 34(1), pages 71-87, March.
- Rhee, Anbin & Kwak, Min-Sun & Lee, Keunbaik, 2022. "Robust modeling of multivariate longitudinal data using modified Cholesky and hypersphere decompositions," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
- Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
- D. Concordet & R. Servien, 2014. "Individual prediction regions for multivariate longitudinal data with small samples," Biometrics, The International Biometric Society, vol. 70(3), pages 629-638, September.
- Vana-Gür, Laura, 2024. "Multivariate ordinal regression for multiple repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
- Paolo Vidoni, 2017. "Improved multivariate prediction regions for Markov process models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 1-18, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Wan-Lun & Fan, Tsai-Hung, 2012. "Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 300-310.
- Marco Del Negro & Frank Schorfheide, 2009.
"Monetary Policy Analysis with Potentially Misspecified Models,"
American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
- Marco Del Negro & Frank Schorfheide, 2005. "Monetary policy analysis with potentially misspecified models," FRB Atlanta Working Paper 2005-26, Federal Reserve Bank of Atlanta.
- Del Negro, Marco & Schorfheide, Frank, 2005. "Monetary policy analysis with potentially misspecified models," Working Paper Series 475, European Central Bank.
- Marco Del Negro & Frank Schorfheide, 2005. "Monetary policy analysis with potentially misspecified models," Working Papers 06-4, Federal Reserve Bank of Philadelphia.
- Marco Del Negro & Frank Schorfheide, 2007. "Monetary Policy Analysis with Potentially Misspecified Models," NBER Working Papers 13099, National Bureau of Economic Research, Inc.
- Marco Del Negro & Frank Schorfheide, 2008. "Monetary policy analysis with potentially misspecified models," Staff Reports 321, Federal Reserve Bank of New York.
- Browne, Ryan P., 2022. "Revitalizing the multivariate elliptical leptokurtic-normal distribution and its application in model-based clustering," Statistics & Probability Letters, Elsevier, vol. 190(C).
- Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
- Ku, Simon F., 1997. "Limited distribution of sample partial autocorrelations: A matrix approach," Stochastic Processes and their Applications, Elsevier, vol. 72(1), pages 121-143, December.
- Daeyoung Kim & Bruce Lindsay, 2015. "Empirical identifiability in finite mixture models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 745-772, August.
- Tobias Hartl & Roland Jucknewitz, 2022.
"Approximate state space modelling of unobserved fractional components,"
Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
- Tobias Hartl & Roland Weigand, 2018. "Approximate State Space Modelling of Unobserved Fractional Components," Papers 1812.09142, arXiv.org, revised May 2020.
- Paul S. Albert & Joanna H. Shih, 2010. "On Estimating the Relationship between Longitudinal Measurements and Time-to-Event Data Using a Simple Two-Stage Procedure," Biometrics, The International Biometric Society, vol. 66(3), pages 983-987, September.
- Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009.
"Real-Time Measurement of Business Conditions,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
- Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-Time Measurement of Business Conditions," NBER Working Papers 14349, National Bureau of Economic Research, Inc.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions," PIER Working Paper Archive 07-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-time measurement of business conditions," Working Papers 08-19, Federal Reserve Bank of Philadelphia.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-time measurement of business conditions," International Finance Discussion Papers 901, Board of Governors of the Federal Reserve System (U.S.).
- Tom Doan, "undated". "RATS programs to replicate Aruoba, Diebold and Scotti JBES 2009," Statistical Software Components RTZ00002, Boston College Department of Economics.
- Lin, Tsung-I, 2014. "Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 183-195.
- Melkamu Molla Ferede & Samuel Mwalili & Getachew Dagne & Simon Karanja & Workagegnehu Hailu & Mahmoud El-Morshedy & Afrah Al-Bossly, 2022. "A Semiparametric Bayesian Joint Modelling of Skewed Longitudinal and Competing Risks Failure Time Data: With Application to Chronic Kidney Disease," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
- O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire, 2012. "Computational aspects of fitting mixture models via the expectation–maximization algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3843-3864.
- Aldo M. Garay & Francyelle L. Medina & Suelem Torres de Freitas & Víctor H. Lachos, 2024. "Bayesian analysis of linear regression models with autoregressive symmetrical errors and incomplete data," Statistical Papers, Springer, vol. 65(9), pages 5649-5690, December.
- Ryan P. Browne & Jeffrey L. Andrews, 2024. "The orthogonal skew model: computationally efficient multivariate skew-normal and skew-t distributions with applications to model-based clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 752-785, September.
- Heikki Kauppi, 2008. "Yield-Curve Based Probit Models for Forecasting U.S. Recessions: Stability and Dynamics," Discussion Papers 31, Aboa Centre for Economics.
- Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
- Gabriele Fiorentini & Enrique Sentana, 2016.
"Neglected serial correlation tests in UCARIMA models,"
SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 121-178, March.
- Gabriele Fiorentini & Enrique Sentana, 2014. "Neglected Serial Correlation Tests in UCARIMA Models," Working Papers wp2014_1406, CEMFI.
- repec:jss:jstsof:28:i02 is not listed on IDEAS
- Xianzheng Huang & Leonard A. Stefanski & Marie Davidian, 2009. "Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process," Biometrics, The International Biometric Society, vol. 65(3), pages 719-727, September.
- Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
- Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:5:p:1328-1341. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.