IDEAS home Printed from https://ideas.repec.org/r/sae/envira/v34y2002i4p733-754.html
   My bibliography  Save this item

A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 1. Location-Specific Kernel Bandwidths and a Test for Locational Heterogeneity

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Roberto Benedetti & Monica Pratesi & Nicola Salvati, 2013. "Local stationarity in small area estimation models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 81-95, March.
  2. Geniaux, Ghislain & Martinetti, Davide, 2018. "A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 74-85.
  3. Mohamed-Salem Ahmed & Lionel Cucala & Michaël Genin, 2021. "Spatial autoregressive models for scan statistic," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-20, December.
  4. Sebastian Brandt & Wolfgang Maennig & Felix Richter, 2014. "Do Houses of Worship Affect Housing Prices? Evidence from Germany," Growth and Change, Wiley Blackwell, vol. 45(4), pages 549-570, December.
  5. Seulki Kim & Carla Shoff & Tse-Chuan Yang, 2021. "Spatial Non-stationarity in Opioid Prescribing Rates: Evidence from Older Medicare Part D Beneficiaries," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 40(2), pages 127-136, April.
  6. M. Bárcena & P. Menéndez & M. Palacios & F. Tusell, 2014. "Alleviating the effect of collinearity in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 16(4), pages 441-466, October.
  7. Jiao, Xiaoying & Li, Gang & Chen, Jason Li, 2020. "Forecasting international tourism demand: a local spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 83(C).
  8. Nick Bailey & Guanpeng Dong & Jon Minton & Gwilym Pryce, 2018. "Reconsidering the Relationship between Air Pollution and Deprivation," IJERPH, MDPI, vol. 15(4), pages 1-17, March.
  9. Alexis Comber & Khanh Chi & Man Q Huy & Quan Nguyen & Binbin Lu & Hoang H Phe & Paul Harris, 2020. "Distance metric choice can both reduce and induce collinearity in geographically weighted regression," Environment and Planning B, , vol. 47(3), pages 489-507, March.
  10. David C Wheeler, 2009. "Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso," Environment and Planning A, , vol. 41(3), pages 722-742, March.
  11. Rojas, Carolina & Páez, Antonio & Barbosa, Olga & Carrasco, Juan, 2016. "Accessibility to urban green spaces in Chilean cities using adaptive thresholds," Journal of Transport Geography, Elsevier, vol. 57(C), pages 227-240.
  12. Abdullah Al Saim & Mohamed H. Aly, 2022. "Machine Learning for Modeling Wildfire Susceptibility at the State Level: An Example from Arkansas, USA," Geographies, MDPI, vol. 2(1), pages 1-17, January.
  13. Ge Shi & Jie Shan & Liang Ding & Peng Ye & Yang Li & Nan Jiang, 2019. "Urban Road Network Expansion and Its Driving Variables: A Case Study of Nanjing City," IJERPH, MDPI, vol. 16(13), pages 1-16, June.
  14. Wei, Chuan-Hua & Qi, Fei, 2012. "On the estimation and testing of mixed geographically weighted regression models," Economic Modelling, Elsevier, vol. 29(6), pages 2615-2620.
  15. Ingrid Nappi‐Choulet & Tristan‐Pierre Maury, 2011. "A Spatial And Temporal Autoregressive Local Estimation For The Paris Housing Market," Journal of Regional Science, Wiley Blackwell, vol. 51(4), pages 732-750, October.
  16. Antonio Páez & Takashi Uchida & Kazuaki Miyamoto, 2002. "A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 2. Spatial Association and Model Specification Tests," Environment and Planning A, , vol. 34(5), pages 883-904, May.
  17. Wiktor Budziński & Danny Campbell & Mikołaj Czajkowski & Urška Demšar & Nick Hanley, 2018. "Using Geographically Weighted Choice Models to Account for the Spatial Heterogeneity of Preferences," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 606-626, September.
  18. Xiaoping Zhou & Zhenyang Qin & Yingjie Zhang & Linyi Zhao & Yan Song, 2019. "Quantitative Estimation and Spatiotemporal Characteristic Analysis of Price Deviation in China's Housing Market," Sustainability, MDPI, vol. 11(24), pages 1-28, December.
  19. Duan Zhuang, 2006. "Spatial Dependence and Neighborhood Effects in Mortgage Lending: A Geographically Weighted Regression Approach," Working Paper 8571, USC Lusk Center for Real Estate.
  20. Ana Sá & José Pereira & Martin Charlton & Bernardo Mota & Paulo Barbosa & A. Stewart Fotheringham, 2011. "The pyrogeography of sub-Saharan Africa: a study of the spatial non-stationarity of fire–environment relationships using GWR," Journal of Geographical Systems, Springer, vol. 13(3), pages 227-248, September.
  21. Moeltner, Klaus & Puri, Roshan & Johnston, Robert J. & Besedin, Elena & Balukas, Jessica & Le, Alyssa, 2022. "Locally Weighted Meta-Regression and Benefit Transfer," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322359, Agricultural and Applied Economics Association.
  22. Qingbin Wei & Lianjun Zhang & Wenbiao Duan & Zhen Zhen, 2019. "Global and Geographically and Temporally Weighted Regression Models for Modeling PM 2.5 in Heilongjiang, China from 2015 to 2018," IJERPH, MDPI, vol. 16(24), pages 1-20, December.
  23. Wrenn, Douglas H. & Sam, Abdoul G., 2014. "Geographically and temporally weighted likelihood regression: Exploring the spatiotemporal determinants of land use change," Regional Science and Urban Economics, Elsevier, vol. 44(C), pages 60-74.
  24. David C Wheeler, 2007. "Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression," Environment and Planning A, , vol. 39(10), pages 2464-2481, October.
  25. Daisuke Murakami & Morito Tsutsumi, 2015. "Area-to-point parameter estimation with geographically weighted regression," Journal of Geographical Systems, Springer, vol. 17(3), pages 207-225, July.
  26. Tom Kauko, 2009. "Classification of Residential Areas in the Three Largest Dutch Cities Using Multidimensional Data," Urban Studies, Urban Studies Journal Limited, vol. 46(8), pages 1639-1663, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.