IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v41y2009i3p722-742.html
   My bibliography  Save this article

Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso

Author

Listed:
  • David C Wheeler

    (Department of Biostatistics, 1518 Clifton Road, NE Third Floor, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA)

Abstract

In the field of spatial analysis, the interest of some researchers in modeling relationships between variables locally has led to the development of regression models with spatially varying coefficients. One such model that has been widely applied is geographically weighted regression (GWR). In the application of GWR, marginal inference on the spatial pattern of regression coefficients is often of interest, as is, less typically, prediction and estimation of the response variable. Empirical research and simulation studies have demonstrated that local correlation in explanatory variables can lead to estimated regression coefficients in GWR that are strongly correlated and, hence, problematic for inference on relationships between variables. The author introduces a penalized form of GWR, called the ‘geographically weighted lasso’ (GWL) which adds a constraint on the magnitude of the estimated regression coefficients to limit the effects of explanatory-variable correlation. The GWL also performs local model selection by potentially shrinking some of the estimated regression coefficients to zero in some locations of the study area. Two versions of the GWL are introduced: one designed to improve prediction of the response variable, and one more oriented toward constraining regression coefficients for inference. The results of applying the GWL to simulated and real datasets show that this method stabilizes regression coefficients in the presence of collinearity and produces lower prediction and estimation error of the response variable than does GWR and another constrained version of GWR—geographically weighted ridge regression.

Suggested Citation

  • David C Wheeler, 2009. "Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso," Environment and Planning A, , vol. 41(3), pages 722-742, March.
  • Handle: RePEc:sae:envira:v:41:y:2009:i:3:p:722-742
    DOI: 10.1068/a40256
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a40256
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a40256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Wheeler & Catherine Calder, 2007. "An assessment of coefficient accuracy in linear regression models with spatially varying coefficients," Journal of Geographical Systems, Springer, vol. 9(2), pages 145-166, June.
    2. Antonio Páez & Takashi Uchida & Kazuaki Miyamoto, 2002. "A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 1. Location-Specific Kernel Bandwidths and a Test for Locational Heterogeneity," Environment and Planning A, , vol. 34(4), pages 733-754, April.
    3. Steven Farber & Antonio Páez, 2007. "A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations," Journal of Geographical Systems, Springer, vol. 9(4), pages 371-396, December.
    4. P. Congdon, 2003. "Modelling spatially varying impacts of socioeconomic predictors on mortality outcomes," Journal of Geographical Systems, Springer, vol. 5(2), pages 161-184, August.
    5. David Wheeler & Michael Tiefelsdorf, 2005. "Multicollinearity and correlation among local regression coefficients in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 7(2), pages 161-187, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christos Agiakloglou & Cleon Tsimbos & Apostolos Tsimpanos, 2019. "Evidence of spurious results along with spatially autocorrelated errors in the context of geographically weighted regression for two independent SAR(1) processes," Empirical Economics, Springer, vol. 57(5), pages 1613-1631, November.
    2. Geniaux, Ghislain & Martinetti, Davide, 2018. "A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 74-85.
    3. Ziying Jiang & Bo Xu, 2014. "Geographically weighted regression analysis of the spatially varying relationship between farming viability and contributing factors in Ohio," Regional Science Policy & Practice, Wiley Blackwell, vol. 6(1), pages 69-83, March.
    4. A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
    5. Wenjie Wu & Guanpeng Dong & Wenzhong Zhang, 2017. "The puzzling heterogeneity of amenity capitalization effects on land markets," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 135-153, March.
    6. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
    7. Löchl, Michael & Axhausen, Kay W., 2010. "Modelling hedonic residential rents for land use and transport simulation while considering spatial effects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(2), pages 39-63.
    8. Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).
    9. Declan Curran, 2012. "British regional growth and sectoral trends: global and local spatial econometric approaches," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2187-2201, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Bárcena & P. Menéndez & M. Palacios & F. Tusell, 2014. "Alleviating the effect of collinearity in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 16(4), pages 441-466, October.
    2. Christos Agiakloglou & Cleon Tsimbos & Apostolos Tsimpanos, 2019. "Evidence of spurious results along with spatially autocorrelated errors in the context of geographically weighted regression for two independent SAR(1) processes," Empirical Economics, Springer, vol. 57(5), pages 1613-1631, November.
    3. repec:rre:publsh:v:51:y:2021:i:2 is not listed on IDEAS
    4. Antonio Páez & Steven Farber & David Wheeler, 2011. "A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships," Environment and Planning A, , vol. 43(12), pages 2992-3010, December.
    5. Geniaux, Ghislain & Martinetti, Davide, 2018. "A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 74-85.
    6. Alexis Comber & Khanh Chi & Man Q Huy & Quan Nguyen & Binbin Lu & Hoang H Phe & Paul Harris, 2020. "Distance metric choice can both reduce and induce collinearity in geographically weighted regression," Environment and Planning B, , vol. 47(3), pages 489-507, March.
    7. Wrenn, Douglas H. & Sam, Abdoul G., 2014. "Geographically and temporally weighted likelihood regression: Exploring the spatiotemporal determinants of land use change," Regional Science and Urban Economics, Elsevier, vol. 44(C), pages 60-74.
    8. Redfearn, Christian L., 2009. "How informative are average effects? Hedonic regression and amenity capitalization in complex urban housing markets," Regional Science and Urban Economics, Elsevier, vol. 39(3), pages 297-306, May.
    9. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    10. David C Wheeler, 2007. "Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression," Environment and Planning A, , vol. 39(10), pages 2464-2481, October.
    11. A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
    12. Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).
    13. Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
    14. Moeltner, Klaus & Puri, Roshan & Johnston, Robert J. & Besedin, Elena & Balukas, Jessica & Le, Alyssa, 2022. "Locally Weighted Meta-Regression and Benefit Transfer," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322359, Agricultural and Applied Economics Association.
    15. Dongwoo Kang & Sandy Dall’erba, 2016. "Exploring the spatially varying innovation capacity of the US counties in the framework of Griliches’ knowledge production function: a mixed GWR approach," Journal of Geographical Systems, Springer, vol. 18(2), pages 125-157, April.
    16. Jiao, Xiaoying & Li, Gang & Chen, Jason Li, 2020. "Forecasting international tourism demand: a local spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 83(C).
    17. Rojas, Carolina & Páez, Antonio & Barbosa, Olga & Carrasco, Juan, 2016. "Accessibility to urban green spaces in Chilean cities using adaptive thresholds," Journal of Transport Geography, Elsevier, vol. 57(C), pages 227-240.
    18. Anping Chen & Marlon Boarnet & Mark Partridge & Wenjie Wu & Guanpeng Dong, 2014. "Valuing The “Green” Amenities In A Spatial Context," Journal of Regional Science, Wiley Blackwell, vol. 54(4), pages 569-585, September.
    19. David Wheeler & Lance Waller, 2009. "Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests," Journal of Geographical Systems, Springer, vol. 11(1), pages 1-22, March.
    20. Daisuke Murakami & Morito Tsutsumi, 2015. "Area-to-point parameter estimation with geographically weighted regression," Journal of Geographical Systems, Springer, vol. 17(3), pages 207-225, July.
    21. Bo Pieter Johannes Andree & Francisco Blasques & Eric Koomen, 2017. "Smooth Transition Spatial Autoregressive Models," Tinbergen Institute Discussion Papers 17-050/III, Tinbergen Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:41:y:2009:i:3:p:722-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.