IDEAS home Printed from https://ideas.repec.org/r/qmw/qmwecw/691.html
   My bibliography  Save this item

Adaptive Forecasting in the Presence of Recent and Ongoing Structural Change

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Forecasting GDP in the presence of breaks: when is the past is a good guide to the future?
    by bankunderground in Bank Underground on 2015-08-20 11:30:00
  2. Forecasting GDP in the presence of breaks: when is the past a good guide to the future?
    by Guest Author in The Big Picture on 2015-09-01 14:00:11

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
  2. Luca Nocciola, "undated". "Finite sample forecast properties and window length under breaks in cointegrated systems," Discussion Papers 19/07, University of Nottingham, Granger Centre for Time Series Econometrics.
  3. Fabio Busetti & Pietro Cova & Antonio Maria Conti & Filippo Scoccianti & Libero Monteforte & Giordano Zevi & Valentina Aprigliano & Andrea Gerali & Alberto Locarno & Alessandro Notarpietro & Massimili, 2014. "The effects of the crisis on production potential and household spending in Italy," Workshop and Conferences 18, Bank of Italy, Economic Research and International Relations Area.
  4. Philip Hans Franses & Eva Janssens, 2018. "This Time It Is Different! Or Not? Discounting Past Data When Predicting The Future," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-34, June.
  5. Y. Dendramis & G. Kapetanios & M. Marcellino, 2020. "A similarity‐based approach for macroeconomic forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 801-827, June.
  6. Petrova, Katerina, 2019. "A quasi-Bayesian local likelihood approach to time varying parameter VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 286-306.
  7. Khowaja, Kainat & Saef, Danial & Sizov, Sergej & Härdle, Wolfgang Karl, 2020. "Data Analytics Driven Controlling: bridging statistical modeling and managerial intuition," IRTG 1792 Discussion Papers 2020-026, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  8. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
  9. Jana Eklund & George Kapetanios & Simon Price, 2013. "Robust Forecast Methods and Monitoring during Structural Change," Manchester School, University of Manchester, vol. 81, pages 3-27, October.
  10. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
  11. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
  12. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
  13. Kapetanios, George & Price, Simon & Young, Garry, 2018. "A UK financial conditions index using targeted data reduction: Forecasting and structural identification," Econometrics and Statistics, Elsevier, vol. 7(C), pages 1-17.
  14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  15. Mardi Dungey & Jan P.A.M. Jacobs & Jing Tian, 2017. "Forecasting output gaps in the G-7 countries: the role of correlated innovations and structural breaks," Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4554-4566, September.
  16. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
  17. Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017. "Have Standard VARS Remained Stable Since the Crisis?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
  18. George Kapetanios & Massimiliano Marcellino & Fabrizio Venditti, 2019. "Large time‐varying parameter VARs: A nonparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1027-1049, November.
  19. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
  20. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
  21. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
  22. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
  23. Franses, Ph.H.B.F. & Janssens, E., 2017. "This time it is different! Or not?," Econometric Institute Research Papers EI2017-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  24. Andre Jungmittag, 2016. "Combination of Forecasts across Estimation Windows: An Application to Air Travel Demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(4), pages 373-380, July.
  25. Giulia Bovini & Eliana Viviano, 2018. "The Italian "employment-rich" recovery: a closer look," Questioni di Economia e Finanza (Occasional Papers) 461, Bank of Italy, Economic Research and International Relations Area.
  26. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
  27. Mariia Artemova & Francisco Blasques & Siem Jan Koopman & Zhaokun Zhang, 2021. "Forecasting in a changing world: from the great recession to the COVID-19 pandemic," Tinbergen Institute Discussion Papers 21-006/III, Tinbergen Institute.
  28. Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2022. "Smooth Robust Multi-Horizon Forecasts," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 143-165, Emerald Group Publishing Limited.
  29. Guido Bulligan & Eliana Viviano, 2017. "Has the wage Phillips curve changed in the euro area?," IZA Journal of Labor Policy, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 6(1), pages 1-22, December.
  30. Giraitis, Liudas & Kapetanios, George & Theodoridis, Konstantinos & Yates, Tony, 2014. "Estimating time-varying DSGE models using minimum distance methods," Bank of England working papers 507, Bank of England.
  31. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
  32. Dendramis, Y. & Tzavalis, E. & Varthalitis, P. & Athanasiou, E., 2020. "Predicting default risk under asymmetric binary link functions," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1039-1056.
  33. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
  34. Rossi, Barbara & Inoue, Atsushi & Jin, Lu, 2014. "Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," CEPR Discussion Papers 10168, C.E.P.R. Discussion Papers.
  35. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
  36. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
  37. Hirano, Keisuke & Wright, Jonathan H., 2022. "Analyzing cross-validation for forecasting with structural instability," Journal of Econometrics, Elsevier, vol. 226(1), pages 139-154.
  38. Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
  39. Atsushi Inoue, 2015. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 9-11, January.
  40. Marianna Riggi & Fabrizio Venditti, 2014. "Surprise! Euro area inflation has fallen," Questioni di Economia e Finanza (Occasional Papers) 237, Bank of Italy, Economic Research and International Relations Area.
  41. Stephen G. Hall & George S. Tavlas & Yongli Wang & Deborah Gefang, 2024. "Inflation forecasting with rolling windows: An appraisal," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 827-851, July.
  42. Luca Nocciola, 2022. "Finite Sample Forecast Properties and Window Length Under Breaks in Cointegrated Systems," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 167-196, Emerald Group Publishing Limited.
  43. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
  44. Dendramis, Y. & Tzavalis, E. & Adraktas, G., 2018. "Credit risk modelling under recessionary and financially distressed conditions," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 160-175.
  45. Zhang, Xingmin & Zhang, Shuai, 2021. "Optimal time-varying tail risk network with a rolling window approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.