IDEAS home Printed from https://ideas.repec.org/r/oxp/obooks/9780199226405.html
   My bibliography  Save this item

The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nehrebecka Natalia, 2018. "Predicting the Default Risk of Companies. Comparison of Credit Scoring Models: Logit Vs Support Vector Machines," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 22(2), pages 54-73, June.
  2. Gergõ Horváth, 2021. "Corporate Credit Risk Modelling in the Supervisory Stress Test of the Magyar Nemzeti Bank," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 20(1), pages 43-73.
  3. Kalak, Izidin El & Azevedo, Alcino & Hudson, Robert & Karim, Mohamad Abd, 2017. "Stock liquidity and SMEs’ likelihood of bankruptcy: Evidence from the US market," Research in International Business and Finance, Elsevier, vol. 42(C), pages 1383-1393.
  4. Galina A. Timofeeva & Yana A. Bozhalkina, 2018. "Dependence of a Loan Portfolio Structure on a Cut-Off Level in a Scoring Model," Journal of New Economy, Ural State University of Economics, vol. 19(2), pages 24-35, April.
  5. Singh, Ramendra Pratap & Singh, Ramendra & Mishra, Prashant, 2021. "Does managing customer accounts receivable impact customer relationships, and sales performance? An empirical investigation," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
  6. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
  7. Marian Nehrebecki, 2023. "Zombification in Poland in particular during COVID-19 pandemic and low interest rates," Bank i Kredyt, Narodowy Bank Polski, vol. 54(2), pages 153-190.
  8. Rafał Balina & Marta Idasz-Balina, 2021. "Drivers of Individual Credit Risk of Retail Customers—A Case Study on the Example of the Polish Cooperative Banking Sector," Risks, MDPI, vol. 9(12), pages 1-26, December.
  9. Matthieu Garcin & Samuel St'ephan, 2021. "Credit scoring using neural networks and SURE posterior probability calibration," Papers 2107.07206, arXiv.org.
  10. Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
  11. Matuszyk, Anna & So, Mee Chi & Mues, Christophe & Moore, Angela, 2016. "Modelling repayment patterns in the collections process for unsecured consumer debt: A case studyAuthor-Name: Thomas, Lyn C," European Journal of Operational Research, Elsevier, vol. 249(2), pages 476-486.
  12. , Aisdl, 2012. "Hoàn thiện hệ thống xếp hạng tín dụng nội bộ đối với doanh nghiệp vay vốn tại Ngân hàng Nông nghiệp và Phát triển Nông thôn Việt Nam," OSF Preprints rmqzg, Center for Open Science.
  13. Zhiyong Li & Xinyi Hu & Ke Li & Fanyin Zhou & Feng Shen, 2020. "Inferring the outcomes of rejected loans: an application of semisupervised clustering," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 631-654, February.
  14. Jairaj Gupta & Nicholas Wilson & Andros Gregoriou & Jerome Healy, 2014. "The value of operating cash flow in modelling credit risk for SMEs," Applied Financial Economics, Taylor & Francis Journals, vol. 24(9), pages 649-660, May.
  15. Johan du Pisanie & James Samuel Allison & Jaco Visagie, 2023. "A Proposed Simulation Technique for Population Stability Testing in Credit Risk Scorecards," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
  16. Silva, Diego M.B. & Pereira, Gustavo H.A. & Magalhães, Tiago M., 2022. "A class of categorization methods for credit scoring models," European Journal of Operational Research, Elsevier, vol. 296(1), pages 323-331.
  17. Nehrebecka Natalia, 2018. "An Evaluation of the Discriminatory Power of Selected Polish Bankruptcy Prediction Models As Part of the Validation Process," Financial Sciences. Nauki o Finansach, Sciendo, vol. 23(4), pages 63-88, December.
  18. Rogelio A. Mancisidor & Michael Kampffmeyer & Kjersti Aas & Robert Jenssen, 2019. "Deep Generative Models for Reject Inference in Credit Scoring," Papers 1904.11376, arXiv.org, revised Sep 2021.
  19. Lei Ding, 2016. "Borrower Credit Access And Credit Performance After Loan Modifications," Working Papers 16-26, Federal Reserve Bank of Philadelphia.
  20. Runchi Zhang & Zhiyi Qiu, 2020. "Optimizing hyper-parameters of neural networks with swarm intelligence: A novel framework for credit scoring," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-35, June.
  21. Gustavo Henrique Araujo Pereira & Rinaldo Artes, 2016. "A comparison of strategies to develop a customer default scoring model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1341-1352, November.
  22. Evžen Kocenda & Martin Vojtek, 2011. "Default Predictors in Retail Credit Scoring: Evidence from Czech Banking Data," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(6), pages 80-98, November.
  23. Tigges, Maximilian & Mestwerdt, Sönke & Tschirner, Sebastian & Mauer, René, 2024. "Who gets the money? A qualitative analysis of fintech lending and credit scoring through the adoption of AI and alternative data," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
  24. Martin Řezáč & Lukáš Toma, 2013. "Indeterminate values of target variable in development of credit scoring models," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(7), pages 2709-2716.
  25. Matthieu Garcin & Samuel Stéphan, 2023. "Credit scoring using neural networks and SURE posterior probability calibration," Working Papers hal-03286760, HAL.
  26. Aaronson, Daniel & Faber, Jacob & Hartley, Daniel & Mazumder, Bhashkar & Sharkey, Patrick, 2021. "The long-run effects of the 1930s HOLC “redlining” maps on place-based measures of economic opportunity and socioeconomic success," Regional Science and Urban Economics, Elsevier, vol. 86(C).
  27. Martin Rezac & Frantisek Rezac, 2011. "How to Measure the Quality of Credit Scoring Models," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(5), pages 486-507, November.
  28. Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
  29. Ha-Thu Nguyen, 2014. "Default Predictors in Credit Scoring - Evidence from France’s Retail Banking Institution," EconomiX Working Papers 2014-26, University of Paris Nanterre, EconomiX.
  30. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.
  31. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
  32. Oguz Koc & Omur Ugur & A. Sevtap Kestel, 2023. "The Impact of Feature Selection and Transformation on Machine Learning Methods in Determining the Credit Scoring," Papers 2303.05427, arXiv.org.
  33. Sergio Edwin Torrico Salamanca, 2014. "Macro credit scoring as a proposal for quantifying credit risk," Investigación & Desarrollo, Universidad Privada Boliviana, vol. 2(1), pages 42-64.
  34. Vineet Gupta & Jackelyn Hwang & Bina Shrimali, 2021. "Neighborhood Change and Residential Instability in Oakland," Community Development Working Paper 2021-01, Federal Reserve Bank of San Francisco.
  35. Ha Thu Nguyen, 2014. "Default Predictors in Credit Scoring - Evidence from France’s Retail Banking Institution," Working Papers hal-04141336, HAL.
  36. Lei Ding & Jackelyn Hwang, 2016. "The Consequences of Gentrification: A Focus on Residents’ Financial Health in Philadelphia," Working Papers 16-22, Federal Reserve Bank of Philadelphia.
  37. Martin Řezáč, 2011. "Advanced empirical estimate of information value for credit scoring models," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 59(2), pages 267-274.
  38. Gero Szepannek, 2022. "An Overview on the Landscape of R Packages for Open Source Scorecard Modelling," Risks, MDPI, vol. 10(3), pages 1-33, March.
  39. Marcin Chlebus, 2014. "One-day prediction of state of turbulence for financial instrument based on models for binary dependent variable," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 37.
  40. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
  41. Bátiz-Zuk Enrique & Mohamed Abdulkadir & Sánchez-Cajal Fátima, 2021. "Exploring the sources of loan default clustering using survival analysis with frailty," Working Papers 2021-14, Banco de México.
  42. Andrea Bedin & Monica Billio & Michele Costola & Loriana Pelizzon, 2019. "Credit Scoring in SME Asset-Backed Securities: An Italian Case Study," JRFM, MDPI, vol. 12(2), pages 1-28, May.
  43. Raffaele Manini & Oriol Amat, 2018. "Credit scoring for the supermarket and retailing industry: analysis and application proposal," Economics Working Papers 1614, Department of Economics and Business, Universitat Pompeu Fabra.
  44. Jose J. Canals-Cerda & Brian Jonghwan Lee, 2021. "COVID-19 and Auto Loan Origination Trends," Working Papers 21-28, Federal Reserve Bank of Philadelphia.
  45. Ha Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," Working Papers hal-04133309, HAL.
  46. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
  47. Pisanets Konstantin K., 2013. "Models of Assessment of the Credit Risk of Borrowers with a Time Parameter for the Systems of Application Credit Scoring," Business Inform, RESEARCH CENTRE FOR INDUSTRIAL DEVELOPMENT PROBLEMS of NAS (KHARKIV, UKRAINE), Kharkiv National University of Economics, issue 7, pages 136-140.
  48. Nawaf Almaskati, 2022. "Machine learning in finance: Major applications, issues, metrics, and future trends," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-32, September.
  49. Jackelyn Hwang & Vasudha Kumar & Becky Liang & Jason Vargo, 2022. "Residential Instability in the Bay Area through the COVID-19 Pandemic," Community Development Research Brief, Federal Reserve Bank of San Francisco, vol. 2022(04), pages 1-37, July.
  50. Maria Rocha Sousa & João Gama & Elísio Brandão, 2013. "Introducing time-changing economics into credit scoring," FEP Working Papers 513, Universidade do Porto, Faculdade de Economia do Porto.
  51. Enrique Batiz‐Zuk & Fabrizio López‐Gallo & Abdulkadir Mohamed & Fátima Sánchez‐Cajal, 2022. "Determinants of loan survival rates for small and medium‐sized enterprises: Evidence from an emerging economy," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4741-4755, October.
  52. Kiviat, Barbara, 2019. "Credit Scoring in the United States," economic sociology. perspectives and conversations, Max Planck Institute for the Study of Societies, vol. 21(1), pages 33-42.
  53. Sanela Pasic & Adisa Omerbegovic Arapovic, 2016. "What Triggers Loan Repayment Failure of Consumer Loans – Evidence from Bosnia and Herzegovina," Eurasian Journal of Business and Management, Eurasian Publications, vol. 4(1), pages 11-22.
  54. Gupta, Jairaj & Wilson, Nicholas & Gregoriou, Andros & Healy, Jerome, 2014. "The effect of internationalisation on modelling credit risk for SMEs: Evidence from UK market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 397-413.
  55. Martin Řezáč, 2015. "ESIS2: Information Value Estimator for Credit Scoring Models," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 303-322, February.
  56. Jackelyn Hwang & Bina Shrimali, 2021. "Constrained Choices: Gentrification, Housing Affordability, and Residential Instability in the San Francisco Bay Area," Community Development Research Brief, Federal Reserve Bank of San Francisco, vol. 2021(02), pages 1-80, April.
  57. Jackelyn Hwang & Elizabeth Kneebone & Vasudha Kumar, 2023. "Recent Findings on Residential Instability in Oakland," Community Development Research Brief, Federal Reserve Bank of San Francisco, vol. 2023(02), pages 1-33, February.
  58. Khudnitskaya, Alesia S., 2009. "Microenvironment-specific Effects in the Application Credit Scoring Model," MPRA Paper 23175, University Library of Munich, Germany.
  59. Yang, Bill Huajian, 2019. "Resolutions to flip-over credit risk and beyond," MPRA Paper 93389, University Library of Munich, Germany.
  60. Fang, Fang & Chen, Yuanyuan, 2019. "A new approach for credit scoring by directly maximizing the Kolmogorov–Smirnov statistic," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 180-194.
  61. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
  62. Almaskati, Nawaf & Bird, Ron & Yeung, Danny & Lu, Yue, 2021. "A horse race of models and estimation methods for predicting bankruptcy," Advances in accounting, Elsevier, vol. 52(C).
  63. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
  64. A?da Kammoun & Imen Triki, 2016. "Credit Scoring Models for a Tunisian Microfinance Institution: Comparison between Artificial Neural Network and Logistic Regression," Review of Economics & Finance, Better Advances Press, Canada, vol. 6, pages 61-78, February.
  65. Kritzinger, Nico & van Vuuren, Gary Wayne, 2021. "Non-capital calibration of bureau scorecards," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 260-271.
  66. Monir El Annas & Badreddine Benyacoub & Mohamed Ouzineb, 2023. "Semi-supervised adapted HMMs for P2P credit scoring systems with reject inference," Computational Statistics, Springer, vol. 38(1), pages 149-169, March.
  67. Jaromir Tichy & Michal Bock, 2017. "Assessment of Investor’s Portfolio of P2P Loans and Structured Certificates of P2P Loans," ACTA VSFS, University of Finance and Administration, vol. 11(2), pages 121-143.
  68. George Xianzhi Yuan & Huiqi Wang, 2019. "The general dynamic risk assessment for the enterprise by the hologram approach in financial technology," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-48, March.
  69. Douw Gerbrand Breed & Niel van Jaarsveld & Carsten Gerken & Tanja Verster & Helgard Raubenheimer, 2021. "Development of an Impairment Point in Time Probability of Default Model for Revolving Retail Credit Products: South African Case Study," Risks, MDPI, vol. 9(11), pages 1-22, November.
  70. Lei Ding, 2017. "Borrower credit access and credit performance after loan modifications," Empirical Economics, Springer, vol. 52(3), pages 977-1005, May.
  71. Rais Ahmad Itoo & A. Selvarasu, 2017. "Loan products and Credit Scoring Methods by Commercial Banks," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 7(1), pages 1297-1297.
  72. Błażej Kochański, 2022. "Which Curve Fits Best: Fitting ROC Curve Models to Empirical Credit-Scoring Data," Risks, MDPI, vol. 10(10), pages 1-17, September.
  73. Y. Yuryk, G. Kuzmenko, 2016. "Creating a scoring model to assess risk events on the labor market," Economy and Forecasting, Valeriy Heyets, issue 3, pages 107-118.
  74. Douw Gerbrand Breed & Tanja Verster & Willem D. Schutte & Naeem Siddiqi, 2019. "Developing an Impairment Loss Given Default Model Using Weighted Logistic Regression Illustrated on a Secured Retail Bank Portfolio," Risks, MDPI, vol. 7(4), pages 1-16, December.
  75. Karol Przanowski, 2014. "Credit acceptance process strategy case studies - the power of Credit Scoring," Papers 1403.6531, arXiv.org.
  76. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.