IDEAS home Printed from https://ideas.repec.org/a/fip/fedfcb/94470.html
   My bibliography  Save this article

Residential Instability in the Bay Area through the COVID-19 Pandemic

Author

Abstract

This report draws on a unique, longitudinal dataset of over 250,000 San Francisco Bay Area residents to examine residential instability—including moving, crowding, and financial health—in the Bay Area during the pandemic. Our research finds a substantial decrease in moving during the pandemic, particularly for residents of extremely low socioeconomic status (SES). At the same time, we report a concerning rise in residents living in crowded conditions and experiencing declining credit scores. These trends suggest that COVID-19 rent relief programs and eviction moratoria may be successful in reducing displacement; however, alternative strategies may be necessary to address other forms of residential instability, like crowding, especially in Black and low-income neighborhoods. This report concludes with recommendations to address residential instability in the Bay Area.

Suggested Citation

  • Jackelyn Hwang & Vasudha Kumar & Becky Liang & Jason Vargo, 2022. "Residential Instability in the Bay Area through the COVID-19 Pandemic," Community Development Research Brief, Federal Reserve Bank of San Francisco, vol. 2022(04), pages 1-37, July.
  • Handle: RePEc:fip:fedfcb:94470
    DOI: 10.24148/cdrb2022-4
    as

    Download full text from publisher

    File URL: https://www.frbsf.org/wp-content/uploads/sites/3/residential-instability-in-the-bay-area-through-the-covid-19-pandemic-cdrb04.pdf
    File Function: Full text - article PDF
    Download Restriction: no

    File URL: https://www.frbsf.org/community-development/wp-content/uploads/sites/3/cdrb04-figure-pdfs.zip
    File Function: Download figures
    Download Restriction: no

    File URL: https://libkey.io/10.24148/cdrb2022-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anderson, Raymond, 2007. "The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation," OUP Catalogue, Oxford University Press, number 9780199226405.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Chlebus, 2014. "One-day prediction of state of turbulence for financial instrument based on models for binary dependent variable," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 37.
    2. Raffaele Manini & Oriol Amat, 2018. "Credit scoring for the supermarket and retailing industry: analysis and application proposal," Economics Working Papers 1614, Department of Economics and Business, Universitat Pompeu Fabra.
    3. Enrique Batiz‐Zuk & Fabrizio López‐Gallo & Abdulkadir Mohamed & Fátima Sánchez‐Cajal, 2022. "Determinants of loan survival rates for small and medium‐sized enterprises: Evidence from an emerging economy," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4741-4755, October.
    4. A?da Kammoun & Imen Triki, 2016. "Credit Scoring Models for a Tunisian Microfinance Institution: Comparison between Artificial Neural Network and Logistic Regression," Review of Economics & Finance, Better Advances Press, Canada, vol. 6, pages 61-78, February.
    5. Kritzinger, Nico & van Vuuren, Gary Wayne, 2021. "Non-capital calibration of bureau scorecards," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 260-271.
    6. Zhiyong Li & Xinyi Hu & Ke Li & Fanyin Zhou & Feng Shen, 2020. "Inferring the outcomes of rejected loans: an application of semisupervised clustering," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 631-654, February.
    7. George Xianzhi Yuan & Huiqi Wang, 2019. "The general dynamic risk assessment for the enterprise by the hologram approach in financial technology," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-48, March.
    8. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    9. Kiviat, Barbara, 2019. "Credit Scoring in the United States," economic sociology. perspectives and conversations, Max Planck Institute for the Study of Societies, vol. 21(1), pages 33-42.
    10. Singh, Ramendra Pratap & Singh, Ramendra & Mishra, Prashant, 2021. "Does managing customer accounts receivable impact customer relationships, and sales performance? An empirical investigation," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    11. Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
    12. Karol Przanowski, 2014. "Credit acceptance process strategy case studies - the power of Credit Scoring," Papers 1403.6531, arXiv.org.
    13. Ha-Thu Nguyen, 2014. "Default Predictors in Credit Scoring - Evidence from France’s Retail Banking Institution," EconomiX Working Papers 2014-26, University of Paris Nanterre, EconomiX.
    14. Jackelyn Hwang & Elizabeth Kneebone & Vasudha Kumar, 2023. "Recent Findings on Residential Instability in Oakland," Community Development Research Brief, Federal Reserve Bank of San Francisco, vol. 2023(02), pages 1-33, February.
    15. Douw Gerbrand Breed & Tanja Verster & Willem D. Schutte & Naeem Siddiqi, 2019. "Developing an Impairment Loss Given Default Model Using Weighted Logistic Regression Illustrated on a Secured Retail Bank Portfolio," Risks, MDPI, vol. 7(4), pages 1-16, December.
    16. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
    17. Evžen Kocenda & Martin Vojtek, 2011. "Default Predictors in Retail Credit Scoring: Evidence from Czech Banking Data," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(6), pages 80-98, November.
    18. Silva, Diego M.B. & Pereira, Gustavo H.A. & Magalhães, Tiago M., 2022. "A class of categorization methods for credit scoring models," European Journal of Operational Research, Elsevier, vol. 296(1), pages 323-331.
    19. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    20. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedfcb:94470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Federal Reserve Bank of San Francisco Research Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbsfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.