IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i10p184-d919507.html
   My bibliography  Save this article

Which Curve Fits Best: Fitting ROC Curve Models to Empirical Credit-Scoring Data

Author

Listed:
  • Błażej Kochański

    (Faculty of Management and Economics, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

Abstract

In the practice of credit-risk management, the models for receiver operating characteristic (ROC) curves are helpful in describing the shape of an ROC curve, estimating the discriminatory power of a scorecard, and generating ROC curves without underlying data. The primary purpose of this study is to review the ROC curve models proposed in the literature, primarily in biostatistics, and to fit them to actual credit-scoring ROC data in order to determine which models could be used in credit-risk-management practice. We list several theoretical models for an ROC curve and describe them in the credit-scoring context. The model list includes the binormal, bigamma, bibeta, bilogistic, power, and bifractal curves. The models are then tested against empirical credit-scoring ROC data from publicly available presentations and papers, as well as from European retail lending institutions. Except for the power curve, all the presented models fit the data quite well. However, based on the results and other favourable properties, it is suggested that the binormal curve is the preferred choice for modelling credit-scoring ROC curves.

Suggested Citation

  • Błażej Kochański, 2022. "Which Curve Fits Best: Fitting ROC Curve Models to Empirical Credit-Scoring Data," Risks, MDPI, vol. 10(10), pages 1-17, September.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:10:p:184-:d:919507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/10/184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/10/184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alicja Jokiel-Rokita & Rafał Topolnicki, 2019. "Minimum distance estimation of the binormal ROC curve," Statistical Papers, Springer, vol. 60(6), pages 2161-2183, December.
    2. Efsun Kürüm & Kasirga Yildirak & Gerhard-Wilhelm Weber, 2012. "A classification problem of credit risk rating investigated and solved by optimisation of the ROC curve," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 529-557, September.
    3. Anderson, Raymond, 2007. "The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation," OUP Catalogue, Oxford University Press, number 9780199226405.
    4. Blochlinger, Andreas & Leippold, Markus, 2006. "Economic benefit of powerful credit scoring," Journal of Banking & Finance, Elsevier, vol. 30(3), pages 851-873, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evžen Kocenda & Martin Vojtek, 2011. "Default Predictors in Retail Credit Scoring: Evidence from Czech Banking Data," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(6), pages 80-98, November.
    2. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    3. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.
    4. Rais Ahmad Itoo & A. Selvarasu, 2017. "Loan products and Credit Scoring Methods by Commercial Banks," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 7(1), pages 1297-1297.
    5. Juha-Pekka Niinimäki & Tuomas Takalo, 2007. "Benchmarking and Comparing Entrepreneurs with Incomplete Information," Finnish Economic Papers, Finnish Economic Association, vol. 20(2), pages 91-107, Autumn.
    6. Marcin Chlebus, 2014. "One-day prediction of state of turbulence for financial instrument based on models for binary dependent variable," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 37.
    7. Raffaele Manini & Oriol Amat, 2018. "Credit scoring for the supermarket and retailing industry: analysis and application proposal," Economics Working Papers 1614, Department of Economics and Business, Universitat Pompeu Fabra.
    8. Enrique Batiz‐Zuk & Fabrizio López‐Gallo & Abdulkadir Mohamed & Fátima Sánchez‐Cajal, 2022. "Determinants of loan survival rates for small and medium‐sized enterprises: Evidence from an emerging economy," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4741-4755, October.
    9. A?da Kammoun & Imen Triki, 2016. "Credit Scoring Models for a Tunisian Microfinance Institution: Comparison between Artificial Neural Network and Logistic Regression," Review of Economics & Finance, Better Advances Press, Canada, vol. 6, pages 61-78, February.
    10. Kritzinger, Nico & van Vuuren, Gary Wayne, 2021. "Non-capital calibration of bureau scorecards," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 260-271.
    11. Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
    12. Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
    13. Zhiyong Li & Xinyi Hu & Ke Li & Fanyin Zhou & Feng Shen, 2020. "Inferring the outcomes of rejected loans: an application of semisupervised clustering," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 631-654, February.
    14. Huseyin Ince & Bora Aktan, 2009. "A comparison of data mining techniques for credit scoring in banking: A managerial perspective," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 10(3), pages 233-240, March.
    15. George Xianzhi Yuan & Huiqi Wang, 2019. "The general dynamic risk assessment for the enterprise by the hologram approach in financial technology," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-48, March.
    16. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    17. Kiviat, Barbara, 2019. "Credit Scoring in the United States," economic sociology. perspectives and conversations, Max Planck Institute for the Study of Societies, vol. 21(1), pages 33-42.
    18. Chi, Li-Chiu & Tang, Tseng-Chung, 2008. "The response of industry rivals to announcements of reorganization filing," Economic Modelling, Elsevier, vol. 25(1), pages 13-23, January.
    19. Dinh, Thi Huyen Thanh & Kleimeier, Stefanie, 2007. "A credit scoring model for Vietnam's retail banking market," International Review of Financial Analysis, Elsevier, vol. 16(5), pages 471-495.
    20. Singh, Ramendra Pratap & Singh, Ramendra & Mishra, Prashant, 2021. "Does managing customer accounts receivable impact customer relationships, and sales performance? An empirical investigation," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:10:p:184-:d:919507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.