IDEAS home Printed from https://ideas.repec.org/r/nat/natene/v2y2017i3d10.1038_nenergy.2017.24.html
   My bibliography  Save this item

Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chen, Jiandong & Xu, Chong & Wang, Yuzhi & Li, Ding & Song, Malin, 2021. "Carbon neutrality based on vegetation carbon sequestration for China's cities and counties: Trend, inequality and driver," Resources Policy, Elsevier, vol. 74(C).
  2. Zhang, Mingming & Song, Wenwen & Liu, Liyun & Zhou, Dequn, 2024. "Optimal investment portfolio strategy for carbon neutrality of power enterprises," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  3. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
  4. Kumar, Vanish & Younis, Sherif A. & Szulejko, Jan E. & Kim, Ki-Hyun, 2023. "Performance of BiO1.5-xIx and composite quasi-photocatalysts for the removal of gaseous elemental Hg0 from coal combustion flue gases: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  5. Timár, Barnabás, 2023. "A klímavédelmi események hatása a köztudatra és a tőkepiacra. Empirikus vizsgálat Google-trends- és ETF-adatokon [The impact of climate events on public perception and capital markets. An empirical," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 713-745.
  6. Gul, Eid & Riva, Lorenzo & Nielsen, Henrik Kofoed & Yang, Haiping & Zhou, Hewen & Yang, Qing & Skreiberg, Øyvind & Wang, Liang & Barbanera, Marco & Zampilli, Mauro & Bartocci, Pietro & Fantozzi, Franc, 2021. "Substitution of coke with pelletized biocarbon in the European and Chinese steel industries: An LCA analysis," Applied Energy, Elsevier, vol. 304(C).
  7. Barry McMullin & Paul Price & Michael B. Jones & Alwynne H. McGeever, 2020. "Assessing negative carbon dioxide emissions from the perspective of a national “fair share” of the remaining global carbon budget," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 579-602, April.
  8. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
  9. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
  10. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.
  11. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
  12. Daniel Scamman & Baltazar Solano-Rodríguez & Steve Pye & Lai Fong Chiu & Andrew Z. P. Smith & Tiziano Gallo Cassarino & Mark Barrett & Robert Lowe, 2020. "Heat Decarbonisation Modelling Approaches in the UK: An Energy System Architecture Perspective," Energies, MDPI, vol. 13(8), pages 1-28, April.
  13. Ken Oshiro & Keii Gi & Shinichiro Fujimori & Heleen L. Soest & Christoph Bertram & Jacques Després & Toshihiko Masui & Pedro Rochedo & Mark Roelfsema & Zoi Vrontisi, 2020. "Mid-century emission pathways in Japan associated with the global 2 °C goal: national and global models’ assessments based on carbon budgets," Climatic Change, Springer, vol. 162(4), pages 1913-1927, October.
  14. Li, Francis G.N. & Bataille, Chris & Pye, Steve & O'Sullivan, Aidan, 2019. "Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?," Applied Energy, Elsevier, vol. 239(C), pages 991-1002.
  15. Antonín Lupíšek & Tomáš Trubačík & Petr Holub, 2021. "Czech Building Stock: Renovation Wave Scenarios and Potential for CO 2 Savings until 2050," Energies, MDPI, vol. 14(9), pages 1-24, April.
  16. Zhang, Xian & Wang, Jia-Xing & Cao, Zhe & Shen, Shuo & Meng, Shuo & Fan, Jing-Li, 2021. "What is driving the remarkable decline of wind and solar power curtailment in China? Evidence from China and four typical provinces," Renewable Energy, Elsevier, vol. 174(C), pages 31-42.
  17. Ahlrichs, Jakob & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2022. "Impact of socio-economic factors on local energetic retrofitting needs - A data analytics approach," Energy Policy, Elsevier, vol. 160(C).
  18. Price, James & Zeyringer, Marianne & Konadu, Dennis & Sobral Mourão, Zenaida & Moore, Andy & Sharp, Ed, 2018. "Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective," Applied Energy, Elsevier, vol. 228(C), pages 928-941.
  19. Ozawa, A. & Tsani, T. & Kudoh, Y., 2022. "Japan's pathways to achieve carbon neutrality by 2050 – Scenario analysis using an energy modeling methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
  20. Jagriti Singh & Krishan Kumar Pandey & Anil Kumar & Farheen Naz & Sunil Luthra, 2023. "Drivers, barriers and practices of net zero economy: An exploratory knowledge based supply chain multi-stakeholder perspective framework," Operations Management Research, Springer, vol. 16(3), pages 1059-1090, September.
  21. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  22. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
  23. Tan, Xiujie & Wang, Banban & Wei, Jie & Taghizadeh-Hesary, Farhad, 2023. "The role of carbon pricing in achieving energy transition in the Post-COP26 era: Evidence from China's industrial energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  24. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
  25. Sandrine Mathy & P. Menanteau, 2020. "Mitigation strategies to enhance the ambition of the nationally determined contributions : an analysis of 4 European countries with the decarbonization wedges methodology," Post-Print hal-03190845, HAL.
  26. Brand, Christian & Anable, Jillian & Ketsopoulou, Ioanna & Watson, Jim, 2020. "Road to zero or road to nowhere? Disrupting transport and energy in a zero carbon world," Energy Policy, Elsevier, vol. 139(C).
  27. Sindhwani, Rahul & Singh, Punj Lata & Behl, Abhishek & Afridi, Mohd. Shayan & Sammanit, Debaroti & Tiwari, Aviral Kumar, 2022. "Modeling the critical success factors of implementing net zero emission (NZE) and promoting resilience and social value creation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
  28. Broad, Oliver & Hawker, Graeme & Dodds, Paul E., 2020. "Decarbonising the UK residential sector: The dependence of national abatement on flexible and local views of the future," Energy Policy, Elsevier, vol. 140(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.