IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v369y2024ics0306261924009668.html
   My bibliography  Save this article

Reliability of net-zero energy systems for South Wales

Author

Listed:
  • Chi, Lixun
  • Qadrdan, Meysam
  • Chaudry, Modassar
  • Su, Huai
  • Zhang, Jinjun

Abstract

Wales is committed to meeting the Net-zero emissions target by 2050. To meet this challenge unprecedented changes in the energy system are required in South Wales. There are various pathways to achieve net-zero emissions in South Wales. These pathways are usually compared based on their costs. However, energy supply reliability assessment is required to determine the security of these scenario pathways. A probabilistic dynamic reliability assessment framework is proposed, which combines the Improved Universal Generating Function and the Improved Fisher optimal algorithm. This technique reduces the computational burden of reliability assessment by 95% with a similar accuracy compared with Monte Carlo Simulations. The impacts and sensitivities of energy sources and technologies on supply reliability in High Electrification and High Hydrogen scenarios are measured. As the penetration level of local renewables increases five-fold in 2050 compared with 2020, Loss of Load Expectation increases from 3 to 10–12 h/year in High Electrification and High Hydrogen scenarios. In summer, the reliability of energy supply is more sensitive to changes in the assumptions on failure probabilities of energy conversion devices, whereas the system's reliability in winter is mainly impacted by the availability of imported energy to South Wales.

Suggested Citation

  • Chi, Lixun & Qadrdan, Meysam & Chaudry, Modassar & Su, Huai & Zhang, Jinjun, 2024. "Reliability of net-zero energy systems for South Wales," Applied Energy, Elsevier, vol. 369(C).
  • Handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009668
    DOI: 10.1016/j.apenergy.2024.123583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924009668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Xueqian & Li, Gengyin & Zhang, Xiurong & Qiao, Zheng, 2018. "Failure probability estimation of the gas supply using a data-driven model in an integrated energy system," Applied Energy, Elsevier, vol. 232(C), pages 704-714.
    2. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    3. Qadrdan, Meysam & Chaudry, Modassar & Jenkins, Nick & Baruah, Pranab & Eyre, Nick, 2015. "Impact of transition to a low carbon power system on the GB gas network," Applied Energy, Elsevier, vol. 151(C), pages 1-12.
    4. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    5. Han, Qinkai & Ma, Sai & Wang, Tianyang & Chu, Fulei, 2019. "Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Lei, Yunkai & Hou, Kai & Wang, Yue & Jia, Hongjie & Zhang, Pei & Mu, Yunfei & Jin, Xiaolong & Sui, Bingyan, 2018. "A new reliability assessment approach for integrated energy systems: Using hierarchical decoupling optimization framework and impact-increment based state enumeration method," Applied Energy, Elsevier, vol. 210(C), pages 1237-1250.
    7. Chaudry, Modassar & Wu, Jianzhong & Jenkins, Nick, 2013. "A sequential Monte Carlo model of the combined GB gas and electricity network," Energy Policy, Elsevier, vol. 62(C), pages 473-483.
    8. Li, Gengfeng & Bie, Zhaohong & Kou, Yu & Jiang, Jiangfeng & Bettinelli, Mattia, 2016. "Reliability evaluation of integrated energy systems based on smart agent communication," Applied Energy, Elsevier, vol. 167(C), pages 397-406.
    9. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    10. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    11. Fan, Lin & Su, Huai & Wang, Wei & Zio, Enrico & Zhang, Li & Yang, Zhaoming & Peng, Shiliang & Yu, Weichao & Zuo, Lili & Zhang, Jinjun, 2022. "A systematic method for the optimization of gas supply reliability in natural gas pipeline network based on Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Guo, Zheyu & Zheng, Yanan & Li, Gengyin, 2020. "Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou," Energy, Elsevier, vol. 205(C).
    13. Fu, Xueqian & Li, Gengyin & Wang, Huaizhi, 2018. "Use of a second-order reliability method to estimate the failure probability of an integrated energy system," Energy, Elsevier, vol. 161(C), pages 425-434.
    14. Ma, Ye & Chi, Yuanying & Wu, Di & Peng, Rui & Wu, Shaomin, 2021. "Reliability of integrated electricity and gas supply system with performance substitution and sharing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Juanwei, Chen & Tao, Yu & Yue, Xu & Xiaohua, Cheng & Bo, Yang & Baomin, Zhen, 2019. "Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies," Applied Energy, Elsevier, vol. 242(C), pages 260-272.
    16. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    17. Wang, Jiang-Jiang & Fu, Chao & Yang, Kun & Zhang, Xu-Tao & Shi, Guo-hua & Zhai, John, 2013. "Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system," Energy, Elsevier, vol. 61(C), pages 531-540.
    18. Steve Pye & Francis G. N. Li & James Price & Birgit Fais, 2017. "Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era," Nature Energy, Nature, vol. 2(3), pages 1-7, March.
    19. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Yang, Zhaoming & Zhang, Jinjun, 2021. "Data-driven reliability assessment method of Integrated Energy Systems based on probabilistic deep learning and Gaussian mixture Model-Hidden Markov Model," Renewable Energy, Elsevier, vol. 174(C), pages 952-970.
    20. Che, Jinxing & Yuan, Fang & Deng, Dewen & Jiang, Zheyong, 2023. "Ultra-short-term probabilistic wind power forecasting with spatial-temporal multi-scale features and K-FSDW based weight," Applied Energy, Elsevier, vol. 331(C).
    21. Fu, Xueqian & Zhang, Xiurong, 2018. "Failure probability estimation of gas supply using the central moment method in an integrated energy system," Applied Energy, Elsevier, vol. 219(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Zhou, Jing & Zhang, Li & Fan, Lin & Yang, Zhaoming & Xie, Fei & Zuo, Lili & Zhang, Jinjun, 2023. "A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model," Energy, Elsevier, vol. 263(PB).
    2. Fu, Xueqian & Zhang, Xiurong & Qiao, Zheng & Li, Gengyin, 2019. "Estimating the failure probability in an integrated energy system considering correlations among failure patterns," Energy, Elsevier, vol. 178(C), pages 656-666.
    3. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    4. Juanwei, Chen & Tao, Yu & Yue, Xu & Xiaohua, Cheng & Bo, Yang & Baomin, Zhen, 2019. "Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies," Applied Energy, Elsevier, vol. 242(C), pages 260-272.
    5. Yu, Weichao & Gong, Jing & Song, Shangfei & Huang, Weihe & Li, Yichen & Zhang, Jie & Hong, Bingyuan & Zhang, Ye & Wen, Kai & Duan, Xu, 2019. "Gas supply reliability analysis of a natural gas pipeline system considering the effects of underground gas storages," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Yang, Zhaoming & Zhang, Jinjun, 2021. "Data-driven reliability assessment method of Integrated Energy Systems based on probabilistic deep learning and Gaussian mixture Model-Hidden Markov Model," Renewable Energy, Elsevier, vol. 174(C), pages 952-970.
    7. Kou, Yu & Bie, Zhaohong & Li, Gengfeng & Liu, Fan & Jiang, Jiangfeng, 2021. "Reliability evaluation of multi-agent integrated energy systems with fully distributed communication," Energy, Elsevier, vol. 224(C).
    8. Wang, Can & Xie, Haipeng & Bie, Zhaohong & Li, Gengfeng & Yan, Chao, 2021. "Fast supply reliability evaluation of integrated power-gas system based on stochastic capacity network model and importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Cabrales, Sergio & Valencia, Carlos & Ramírez, Carlos & Ramírez, Andrés & Herrera, Juan & Cadena, Angela, 2022. "Stochastic cost-benefit analysis to assess new infrastructure to improve the reliability of the natural gas supply," Energy, Elsevier, vol. 246(C).
    10. Fu, Xueqian & Li, Gengyin & Zhang, Xiurong & Qiao, Zheng, 2018. "Failure probability estimation of the gas supply using a data-driven model in an integrated energy system," Applied Energy, Elsevier, vol. 232(C), pages 704-714.
    11. Fuqiang Li & Shiying Zhang & Wenxuan Li & Wei Zhao & Bingkang Li & Huiru Zhao, 2019. "Forecasting Hourly Power Load Considering Time Division: A Hybrid Model Based on K-means Clustering and Probability Density Forecasting Techniques," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    12. Daniel Scamman & Baltazar Solano-Rodríguez & Steve Pye & Lai Fong Chiu & Andrew Z. P. Smith & Tiziano Gallo Cassarino & Mark Barrett & Robert Lowe, 2020. "Heat Decarbonisation Modelling Approaches in the UK: An Energy System Architecture Perspective," Energies, MDPI, vol. 13(8), pages 1-28, April.
    13. Corrado lo Storto, 2019. "An SNA-DEA Prioritization Framework to Identify Critical Nodes of Gas Networks: The Case of the US Interstate Gas Infrastructure," Energies, MDPI, vol. 12(23), pages 1-18, December.
    14. Liu, Wenxia & Huang, Yuchen & Li, Zhengzhou & Yang, Yue & Yi, Fang, 2020. "Optimal allocation for coupling device in an integrated energy system considering complex uncertainties of demand response," Energy, Elsevier, vol. 198(C).
    15. You Zhou & Chuan He, 2022. "A Review on Reliability of Integrated Electricity-Gas System," Energies, MDPI, vol. 15(18), pages 1-22, September.
    16. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    17. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    18. Yu, Weichao & Song, Shangfei & Li, Yichen & Min, Yuan & Huang, Weihe & Wen, Kai & Gong, Jing, 2018. "Gas supply reliability assessment of natural gas transmission pipeline systems," Energy, Elsevier, vol. 162(C), pages 853-870.
    19. Wang, Can & Yan, Chao & Li, Gengfeng & Liu, Shiyu & Bie, Zhaohong, 2020. "Risk assessment of integrated electricity and heat system with independent energy operators based on Stackelberg game," Energy, Elsevier, vol. 198(C).
    20. Postnikov, Ivan & Stennikov, Valery & Mednikova, Ekaterina & Penkovskii, Andrey, 2018. "Methodology for optimization of component reliability of heat supply systems," Applied Energy, Elsevier, vol. 227(C), pages 365-374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.