IDEAS home Printed from https://ideas.repec.org/r/inm/ortrsc/v40y2006i2p211-225.html
   My bibliography  Save this item

Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gregorio Tirado & Lars Magnus Hvattum, 2017. "Determining departure times in dynamic and stochastic maritime routing and scheduling problems," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 553-571, December.
  2. Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
  3. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
  4. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
  5. Michael F. Gorman & John-Paul Clarke & René Koster & Michael Hewitt & Debjit Roy & Mei Zhang, 2023. "Emerging practices and research issues for big data analytics in freight transportation," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 28-60, March.
  6. Zolfagharinia, Hossein & Haughton, Michael, 2014. "The benefit of advance load information for truckload carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 34-54.
  7. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
  8. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
  9. van de Klundert, J. & Wormer, L., 2008. "ASAP: the after salesman problem," Research Memorandum 054, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  10. Chen, Lichun & Miller-Hooks, Elise, 2012. "Optimal team deployment in urban search and rescue," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 984-999.
  11. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
  12. Zolfagharinia, Hossein & Haughton, Michael, 2016. "Effective truckload dispatch decision methods with incomplete advance load information," European Journal of Operational Research, Elsevier, vol. 252(1), pages 103-121.
  13. Sayarshad, Hamid R. & Du, Xinpi & Gao, H. Oliver, 2020. "Dynamic post-disaster debris clearance problem with re-positioning of clearance equipment items under partially observable information," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 352-372.
  14. Srour, F.J. & Agatz, N.A.H. & Oppen, J., 2014. "Strategies for Handling Temporal Uncertainty in Pickup and Delivery Problems with Time Windows," ERIM Report Series Research in Management ERS-2014-015-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  15. Mustafa Demirbilek & Juergen Branke & Arne Strauss, 2019. "Dynamically accepting and scheduling patients for home healthcare," Health Care Management Science, Springer, vol. 22(1), pages 140-155, March.
  16. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
  17. Ma, Tai-Yu & Rasulkhani, Saeid & Chow, Joseph Y.J. & Klein, Sylvain, 2019. "A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 417-442.
  18. Alonso Tabares, Diego & Mora-Camino, Felix & Drouin, Antoine, 2021. "A multi-time scale management structure for airport ground handling automation," Journal of Air Transport Management, Elsevier, vol. 90(C).
  19. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
  20. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
  21. Nabila Azi & Michel Gendreau & Jean-Yves Potvin, 2012. "A dynamic vehicle routing problem with multiple delivery routes," Annals of Operations Research, Springer, vol. 199(1), pages 103-112, October.
  22. Miguel Andres Figliozzi & Hani S. Mahmassani & Patrick Jaillet, 2007. "Pricing in Dynamic Vehicle Routing Problems," Transportation Science, INFORMS, vol. 41(3), pages 302-318, August.
  23. Florian Dandl & Michael Hyland & Klaus Bogenberger & Hani S. Mahmassani, 2019. "Evaluating the impact of spatio-temporal demand forecast aggregation on the operational performance of shared autonomous mobility fleets," Transportation, Springer, vol. 46(6), pages 1975-1996, December.
  24. W Maden & R Eglese & D Black, 2010. "Vehicle routing and scheduling with time-varying data: A case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 515-522, March.
  25. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
  26. Sayarshad, Hamid R. & Gao, H. Oliver, 2020. "Optimizing dynamic switching between fixed and flexible transit services with an idle-vehicle relocation strategy and reductions in emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 198-214.
  27. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
  28. Joris van de Klundert & Laurens Wormer, 2010. "ASAP: The After-Salesman Problem," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 627-641, March.
  29. Martijn Mes & Matthieu Heijden & Peter Schuur, 2013. "Interaction between intelligent agent strategies for real-time transportation planning," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 337-358, March.
  30. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
  31. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
  32. Xiong Hao & Yan Huili, 2019. "General Method of Building a Real-Time Optimization Policy for Dynamic Vehicle Routing Problem," Journal of Systems Science and Information, De Gruyter, vol. 7(6), pages 584-598, December.
  33. Marlin W. Ulmer, 2020. "Horizontal combinations of online and offline approximate dynamic programming for stochastic dynamic vehicle routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 279-308, March.
  34. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
  35. Ozbaygin, Gizem & Savelsbergh, Martin, 2019. "An iterative re-optimization framework for the dynamic vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 207-235.
  36. Hugo P. Simão & Jeff Day & Abraham P. George & Ted Gifford & John Nienow & Warren B. Powell, 2009. "An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application," Transportation Science, INFORMS, vol. 43(2), pages 178-197, May.
  37. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
  38. Liu, Bingsheng & Sheu, Jiuh-Biing & Zhao, Xue & Chen, Yuan & Zhang, Wei, 2020. "Decision making on post-disaster rescue routing problems from the rescue efficiency perspective," European Journal of Operational Research, Elsevier, vol. 286(1), pages 321-335.
  39. Ferrucci, Francesco & Bock, Stefan & Gendreau, Michel, 2013. "A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods," European Journal of Operational Research, Elsevier, vol. 225(1), pages 130-141.
  40. Srour, F.J. & Agatz, N.A.H. & Oppen, J., 2014. "The Value of Inaccurate Advance Time Window Information in a Pick-up and Delivery Problem," ERIM Report Series Research in Management ERS-2014-002-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  41. Yu Wu & Bo Zeng & Siming Huang, 2019. "A Dynamic Strategy for Home Pick-Up Service with Uncertain Customer Requests and Its Implementation," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
  42. Ferrucci, Francesco & Bock, Stefan, 2015. "A general approach for controlling vehicle en-route diversions in dynamic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 76-87.
  43. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
  44. Abdollahi, Mohammad & Yang, Xinan & Nasri, Moncef Ilies & Fairbank, Michael, 2023. "Demand management in time-slotted last-mile delivery via dynamic routing with forecast orders," European Journal of Operational Research, Elsevier, vol. 309(2), pages 704-718.
  45. Joseph Y. J. Chow & Hamid R. Sayarshad, 2016. "Reference Policies for Non-myopic Sequential Network Design and Timing Problems," Networks and Spatial Economics, Springer, vol. 16(4), pages 1183-1209, December.
  46. Marlin W. Ulmer & Leonard Heilig & Stefan Voß, 2017. "On the Value and Challenge of Real-Time Information in Dynamic Dispatching of Service Vehicles," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 161-171, June.
  47. Györgyi, Péter & Kis, Tamás, 2019. "A probabilistic approach to pickup and delivery problems with time window uncertainty," European Journal of Operational Research, Elsevier, vol. 274(3), pages 909-923.
  48. Zolfagharinia, Hossein & Haughton, Michael A., 2017. "Operational flexibility in the truckload trucking industry," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 437-460.
  49. Sayarshad, Hamid R. & Chow, Joseph Y.J., 2015. "A scalable non-myopic dynamic dial-a-ride and pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 539-554.
  50. Sayarshad, Hamid R. & Gao, H. Oliver, 2018. "A non-myopic dynamic inventory routing and pricing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 83-98.
  51. Bock, Stefan, 2010. "Real-time control of freight forwarder transportation networks by integrating multimodal transport chains," European Journal of Operational Research, Elsevier, vol. 200(3), pages 733-746, February.
  52. Jonathan Turner & Soonhui Lee & Mark Daskin & Tito Homem-de-Mello & Karen Smilowitz, 2012. "Dynamic fleet scheduling with uncertain demand and customer flexibility," Computational Management Science, Springer, vol. 9(4), pages 459-481, November.
  53. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
  54. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
  55. Hamed Faroqi & Abolghasem Sadeghi-Niaraki, 2016. "GIS-based ride-sharing and DRT in Tehran city," Public Transport, Springer, vol. 8(2), pages 243-260, September.
  56. Li Ma & Minghan Xin & Yi-Jia Wang & Yanjiao Zhang, 2022. "Dynamic Scheduling Strategy for Shared Agricultural Machinery for On-Demand Farming Services," Mathematics, MDPI, vol. 10(21), pages 1-22, October.
  57. Cristián E. Cortés & Doris Sáez & Alfredo Núñez & Diego Muñoz-Carpintero, 2009. "Hybrid Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 43(1), pages 27-42, February.
  58. Saint-Guillain, Michael & Paquay, Célia & Limbourg, Sabine, 2021. "Time-dependent stochastic vehicle routing problem with random requests: Application to online police patrol management in Brussels," European Journal of Operational Research, Elsevier, vol. 292(3), pages 869-885.
  59. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
  60. Gianpaolo Ghiani & Emanuele Manni & Barrett W. Thomas, 2012. "A Comparison of Anticipatory Algorithms for the Dynamic and Stochastic Traveling Salesman Problem," Transportation Science, INFORMS, vol. 46(3), pages 374-387, August.
  61. Mustafa Demirbilek & Juergen Branke & Arne K. Strauss, 2021. "Home healthcare routing and scheduling of multiple nurses in a dynamic environment," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 253-280, March.
  62. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
  63. Scavarda, Manuel & Seok, Hyesung & Puranik, Anurag S. & Nof, Shimon Y., 2015. "Adaptive direct/indirect delivery decision protocol by collaborative negotiation among manufacturers, distributors, and retailers," International Journal of Production Economics, Elsevier, vol. 167(C), pages 232-245.
  64. F. Jordan Srour & Niels Agatz & Johan Oppen, 2018. "Strategies for Handling Temporal Uncertainty in Pickup and Delivery Problems with Time Windows," Transportation Science, INFORMS, vol. 52(1), pages 3-19, January.
  65. Lian, Ying & Lucas, Flavien & Sörensen, Kenneth, 2024. "Prepositioning can improve the performance of a dynamic stochastic on-demand public bus system," European Journal of Operational Research, Elsevier, vol. 312(1), pages 338-356.
  66. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
  67. van de Klundert, Joris & Otten, Bernhard, 2011. "Improving LTL truck load utilization on line," European Journal of Operational Research, Elsevier, vol. 210(2), pages 336-343, April.
  68. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
  69. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "On-demand bus routing problem with dynamic stochastic requests and prepositioning," Working Papers 2022004, University of Antwerp, Faculty of Business and Economics.
  70. Tafreshian, Amirmahdi & Abdolmaleki, Mojtaba & Masoud, Neda & Wang, Huizhu, 2021. "Proactive shuttle dispatching in large-scale dynamic dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 227-259.
  71. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
  72. Bongiovanni, Claudia & Kaspi, Mor & Cordeau, Jean-François & Geroliminis, Nikolas, 2022. "A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.