IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v286y2020i1p321-335.html
   My bibliography  Save this article

Decision making on post-disaster rescue routing problems from the rescue efficiency perspective

Author

Listed:
  • Liu, Bingsheng
  • Sheu, Jiuh-Biing
  • Zhao, Xue
  • Chen, Yuan
  • Zhang, Wei

Abstract

The efficiency of emergency responses is at the heart of post-disaster rescue routing problems. Previous rescue models address the efficiency issue primarily by minimizing the total travel time, while not taking into account other significant factors in the rescue process, such as the number of affected people and the degree of building damage. To overcome these shortcomings, this paper aims to solve the rescue routing problem by maximizing the arc-based rescue efficiency, which is redefined as the ratio between the primary rescue input and output factors to represent the efficiency of the rescue operations. Therefore, a systematic methodology is proposed to decompose the original rescue routing problem into two decision making phases. First, an extended data envelopment analysis (DEA) model is constructed to evaluate the rescue efficiency along each arc. Specifically, a group decision constraint cone, which refers to the combined output of a group decision from experts, is constructed to distinguish the features and rescue focus of each disaster. Second, an efficiency-based routing model is developed to determine a feasible rescue tour for the entire transportation network, thus achieving the goal of maximizing the total rescue efficiency. An empirical example of a real earthquake disaster in Wenchuan, China, is provided to demonstrate the novelty and practical capabilities of the proposed approach in post-disaster emergency rescue operations. Finally, a comparison analysis is conducted with the traditional time-oriented routing method, and the results show that the method proposed in this study can improve the rescue performance by 21.2%.

Suggested Citation

  • Liu, Bingsheng & Sheu, Jiuh-Biing & Zhao, Xue & Chen, Yuan & Zhang, Wei, 2020. "Decision making on post-disaster rescue routing problems from the rescue efficiency perspective," European Journal of Operational Research, Elsevier, vol. 286(1), pages 321-335.
  • Handle: RePEc:eee:ejores:v:286:y:2020:i:1:p:321-335
    DOI: 10.1016/j.ejor.2020.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720302319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    2. Guo, Chuanyin & Abbasi Shureshjani, Roohollah & Foroughi, Ali Asghar & Zhu, Joe, 2017. "Decomposition weights and overall efficiency in two-stage additive network DEA," European Journal of Operational Research, Elsevier, vol. 257(3), pages 896-906.
    3. Linet Özdamar & Ediz Ekinci & Beste Küçükyazici, 2004. "Emergency Logistics Planning in Natural Disasters," Annals of Operations Research, Springer, vol. 129(1), pages 217-245, July.
    4. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    5. Erica Gralla & Jarrod Goentzel & Charles Fine, 2016. "Problem Formulation and Solution Mechanisms: A Behavioral Study of Humanitarian Transportation Planning," Production and Operations Management, Production and Operations Management Society, vol. 25(1), pages 22-35, January.
    6. Manoj Vanajakumari & Subodha Kumar & Sushil Gupta, 2016. "An Integrated Logistic Model for Predictable Disasters," Production and Operations Management, Production and Operations Management Society, vol. 25(5), pages 791-811, May.
    7. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    8. Nezih Altay & Raktim Pal, 2014. "Information Diffusion among Agents: Implications for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 1015-1027, June.
    9. Hu, Zhi-Hua & Sheu, Jiuh-Biing & Xiao, Ling, 2014. "Post-disaster evacuation and temporary resettlement considering panic and panic spread," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 112-132.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Nobuo Mimura & Kazuya Yasuhara & Seiki Kawagoe & Hiromune Yokoki & So Kazama, 2011. "Erratum to: Damage from the Great East Japan Earthquake and Tsunami - A quick report," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(8), pages 943-945, December.
    12. Faturechi, Reza & Miller-Hooks, Elise, 2014. "Travel time resilience of roadway networks under disaster," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 47-64.
    13. Sheu, Jiuh-Biing, 2014. "Post-disaster relief–service centralized logistics distribution with survivor resilience maximization," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 288-314.
    14. Chen, Lichun & Miller-Hooks, Elise, 2012. "Optimal team deployment in urban search and rescue," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 984-999.
    15. An, Shi & Cui, Na & Li, Xiaopeng & Ouyang, Yanfeng, 2013. "Location planning for transit-based evacuation under the risk of service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 1-16.
    16. William W. Cooper & Lawrence M. Seiford & Joe Zhu, 2011. "Data Envelopment Analysis: History, Models, and Interpretations," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 1-39, Springer.
    17. Sheu, Jiuh-Biing, 2007. "An emergency logistics distribution approach for quick response to urgent relief demand in disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 687-709, November.
    18. Nobuo Mimura & Kazuya Yasuhara & Seiki Kawagoe & Hiromune Yokoki & So Kazama, 2011. "Damage from the Great East Japan Earthquake and Tsunami - A quick report," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(7), pages 803-818, October.
    19. Maria Besiou & Alfonso J. Pedraza-Martinez & Luk N. Van Wassenhove, 2014. "Vehicle Supply Chains in Humanitarian Operations: Decentralization, Operational Mix, and Earmarked Funding," Production and Operations Management, Production and Operations Management Society, vol. 23(11), pages 1950-1965, November.
    20. Sheu, Jiuh-Biing, 2010. "Dynamic relief-demand management for emergency logistics operations under large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 1-17, January.
    21. Chen, Yao, 2005. "Measuring super-efficiency in DEA in the presence of infeasibility," European Journal of Operational Research, Elsevier, vol. 161(2), pages 545-551, March.
    22. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    23. Chen, Albert Y. & Yu, Ting-Yi, 2016. "Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 408-423.
    24. Jon M. Stauffer & Alfonso J. Pedraza-Martinez & Luk N. Van Wassenhove, 2016. "Temporary Hubs for the Global Vehicle Supply Chain in Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 25(2), pages 192-209, February.
    25. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    26. Roger Bilham, 2010. "Lessons from the Haiti earthquake," Nature, Nature, vol. 463(7283), pages 878-879, February.
    27. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    28. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    29. Ann Melissa Campbell & Dieter Vandenbussche & William Hermann, 2008. "Routing for Relief Efforts," Transportation Science, INFORMS, vol. 42(2), pages 127-145, May.
    30. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    31. Huang, Michael & Smilowitz, Karen R. & Balcik, Burcu, 2013. "A continuous approximation approach for assessment routing in disaster relief," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 20-41.
    32. Talluri, Srinivas & Paul Yoon, K., 2000. "A cone-ratio DEA approach for AMT justification," International Journal of Production Economics, Elsevier, vol. 66(2), pages 119-129, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Cheng-Hao & Lin, Yi-Kuei, 2024. "Rescue and safety system development and performance evaluation by network reliability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Qin, Jindong & Li, Minxuan & Wang, Xiaojun & Pedrycz, Witold, 2024. "Collaborative emergency decision-making: A framework for deep learning with social media data," International Journal of Production Economics, Elsevier, vol. 267(C).
    5. Huang, Cheng-Hao & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2023. "Network reliability prediction for random capacitated-flow networks via an artificial neural network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Aghaie, Sepide & Karimi, Behrooz, 2022. "Location-allocation-routing for emergency shelters based on geographical information system (ArcGIS) by NSGA-II (case study: Earthquake occurrence in Tehran (District-1))," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    7. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2023. "Distributionally robust chance-constrained programming for multi-period emergency resource allocation and vehicle routing in disaster response operations," Omega, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    2. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    3. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    4. Jiawei Yang & Lei Fang, 2022. "Average lexicographic efficiency decomposition in two-stage data envelopment analysis: an application to China’s regional high-tech innovation systems," Annals of Operations Research, Springer, vol. 312(2), pages 1051-1093, May.
    5. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    6. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    7. Jónas Oddur Jónasson & Kamalini Ramdas & Alp Sungu, 2022. "Social impact operations at the global base of the pyramid," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4364-4378, December.
    8. Liu, Hui-hui & Yang, Guo-liang & Liu, Xiao-xiao & Song, Yao-yao, 2020. "R&D performance assessment of industrial enterprises in China: A two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    9. Chu, Junfei & Zhu, Joe, 2021. "Production scale-based two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 294(1), pages 283-294.
    10. Imanirad, Raha & Cook, Wade D. & Aviles-Sacoto, Sonia Valeria & Zhu, Joe, 2015. "Partial input to output impacts in DEA: The case of DMU-specific impacts," European Journal of Operational Research, Elsevier, vol. 244(3), pages 837-844.
    11. Petridis, Konstantinos & Malesios, Chrisovalantis & Arabatzis, Garyfallos & Thanassoulis, Emmanuel, 2013. "Efficiency analysis of forestry journals: Suggestions for improving journals’ quality," Journal of Informetrics, Elsevier, vol. 7(2), pages 505-521.
    12. Tran, Trung Hieu & Mao, Yong & Nathanail, Paul & Siebers, Peer-Olaf & Robinson, Darren, 2019. "Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis," Omega, Elsevier, vol. 85(C), pages 156-165.
    13. Khoveyni, Mohammad & Fukuyama, Hirofumi & Eslami, Robabeh & Yang, Guo-liang, 2019. "Variations effect of intermediate products on the second stage in two-stage processes," Omega, Elsevier, vol. 85(C), pages 35-48.
    14. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    15. Wu, Jie & Xu, Guangcheng & Zhu, Qingyuan & Zhang, Chaochao, 2021. "Two-stage DEA models with fairness concern: Modelling and computational aspects," Omega, Elsevier, vol. 105(C).
    16. Alfonso J. Pedraza-Martinez & Sameer Hasija & Luk N. Van Wassenhove, 2020. "Fleet Coordination in Decentralized Humanitarian Operations Funded by Earmarked Donations," Operations Research, INFORMS, vol. 68(4), pages 984-999, July.
    17. Sarmento, Joaquim Miranda & Renneboog, Luc & Verga-Matos, Pedro, 2017. "Measuring highway efficiency : A DEA approach and the Malquist index," Other publications TiSEM 23264815-321e-45a3-83ee-9, Tilburg University, School of Economics and Management.
    18. Yang Li & An-Chi Liu & Shu-Mei Wang & Yiting Zhan & Jingran Chen & Hsiao-Fen Hsiao, 2022. "A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.
    19. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    20. Wen-Min Lu & Qian Long Kweh & Kai-Chu Yang, 2022. "Multiplicative efficiency aggregation to evaluate Taiwanese local auditing institutions performance," Annals of Operations Research, Springer, vol. 315(2), pages 1243-1262, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:286:y:2020:i:1:p:321-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.