IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v109y2018icp83-98.html
   My bibliography  Save this article

A non-myopic dynamic inventory routing and pricing problem

Author

Listed:
  • Sayarshad, Hamid R.
  • Gao, H. Oliver

Abstract

A new framework for the design of a dynamic non-myopic inventory and delivery network between suppliers and retailers under the assumption of elastic demand—one that simultaneously incorporates inventory, routing, and pricing—is proposed. The developed queuing approximation method is based on optimal tolling of queues. We propose a dynamic approach for a supplier who has to deliver products to a number of retailers while maximizing social welfare through dynamic pricing that accounts for customer waiting times, inventory holding, lost-sales costs, and delivery costs. The proposed non-myopic model increases the social welfare by up to 17% compared to the marginal pricing case.

Suggested Citation

  • Sayarshad, Hamid R. & Gao, H. Oliver, 2018. "A non-myopic dynamic inventory routing and pricing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 83-98.
  • Handle: RePEc:eee:transe:v:109:y:2018:i:c:p:83-98
    DOI: 10.1016/j.tre.2017.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554517305847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2017.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marielle Christiansen & Bjorn Nygreen, 1998. "A method for solving ship routing problemswith inventory constraints," Annals of Operations Research, Springer, vol. 81(0), pages 357-378, June.
    2. João L. Assunção & Robert J. Meyer, 1993. "The Rational Effect of Price Promotions on Sales and Consumption," Management Science, INFORMS, vol. 39(5), pages 517-535, May.
    3. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    4. Greenblatt, Jeffery & Shaheen, Susan PhD, 2015. "Automated Vehicles, On-Demand Mobility and Environmental Impacts," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt23r1h80t, Institute of Transportation Studies, UC Berkeley.
    5. Alan S. Minkoff, 1993. "A Markov Decision Model and Decomposition Heuristic for Dynamic Vehicle Dispatching," Operations Research, INFORMS, vol. 41(1), pages 77-90, February.
    6. Haim Mendelson & Seungjin Whang, 1990. "Optimal Incentive-Compatible Priority Pricing for the M/M/1 Queue," Operations Research, INFORMS, vol. 38(5), pages 870-883, October.
    7. Sayarshad, Hamid R. & Chow, Joseph Y.J., 2017. "Non-myopic relocation of idle mobility-on-demand vehicles as a dynamic location-allocation-queueing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 60-77.
    8. Dror, Moshe, 1993. "Modeling vehicle routing with uncertain demands as a stochastic program: Properties of the corresponding solution," European Journal of Operational Research, Elsevier, vol. 64(3), pages 432-441, February.
    9. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
    10. Barrett W. Thomas & Chelsea C. White, 2004. "Anticipatory Route Selection," Transportation Science, INFORMS, vol. 38(4), pages 473-487, November.
    11. Kunreuther, Howard & Richard, Jean Francois, 1971. "Optimal Pricing and Inventory Decisions for Non-Seasonal Items," Econometrica, Econometric Society, vol. 39(1), pages 173-175, January.
    12. Mitrovic-Minic, Snezana & Krishnamurti, Ramesh & Laporte, Gilbert, 2004. "Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 669-685, September.
    13. Sayarshad, Hamid R. & Chow, Joseph Y.J., 2015. "A scalable non-myopic dynamic dial-a-ride and pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 539-554.
    14. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    15. Nachiappan, S.P. & Jawahar, N., 2007. "A genetic algorithm for optimal operating parameters of VMI system in a two-echelon supply chain," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1433-1452, November.
    16. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    17. Michael Z. Spivey & Warren B. Powell, 2004. "The Dynamic Assignment Problem," Transportation Science, INFORMS, vol. 38(4), pages 399-419, November.
    18. Naor, P, 1969. "The Regulation of Queue Size by Levying Tolls," Econometrica, Econometric Society, vol. 37(1), pages 15-24, January.
    19. Nicola Secomandi, 2001. "A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 49(5), pages 796-802, October.
    20. Teck-Hua Ho & Christopher S. Tang & David R. Bell, 1998. "Rational Shopping Behavior and the Option Value of Variable Pricing," Management Science, INFORMS, vol. 44(12-Part-2), pages 145-160, December.
    21. Moshe Dror & Gilbert Laporte & Pierre Trudeau, 1989. "Vehicle Routing with Stochastic Demands: Properties and Solution Frameworks," Transportation Science, INFORMS, vol. 23(3), pages 166-176, August.
    22. Lap Mui Ann Chan & David Simchi-Levi, 1998. "Probabilistic Analyses and Algorithms for Three-Level Distribution Systems," Management Science, INFORMS, vol. 44(11-Part-1), pages 1562-1576, November.
    23. Warren B. Powell, 1996. "A Stochastic Formulation of the Dynamic Assignment Problem, with an Application to Truckload Motor Carriers," Transportation Science, INFORMS, vol. 30(3), pages 195-219, August.
    24. Miguel Andres Figliozzi & Hani S. Mahmassani & Patrick Jaillet, 2007. "Pricing in Dynamic Vehicle Routing Problems," Transportation Science, INFORMS, vol. 41(3), pages 302-318, August.
    25. Daniel Adelman, 2004. "A Price-Directed Approach to Stochastic Inventory/Routing," Operations Research, INFORMS, vol. 52(4), pages 499-514, August.
    26. Lau, Amy Hing Ling & Lau, Hon-Shiang, 2003. "Effects of a demand-curve's shape on the optimal solutions of a multi-echelon inventory/pricing model," European Journal of Operational Research, Elsevier, vol. 147(3), pages 530-548, June.
    27. Knudsen, Niels Chr, 1972. "Individual and Social Optimization in a Multiserver Queue with a General Cost-Benefit Structure," Econometrica, Econometric Society, vol. 40(3), pages 515-528, May.
    28. Patrick Jaillet & Jonathan F. Bard & Liu Huang & Moshe Dror, 2002. "Delivery Cost Approximations for Inventory Routing Problems in a Rolling Horizon Framework," Transportation Science, INFORMS, vol. 36(3), pages 292-300, August.
    29. Marielle Christiansen & Bjørn Nygreen, 1998. "Modelling path flows for a combined ship routingand inventory management problem," Annals of Operations Research, Springer, vol. 82(0), pages 391-413, August.
    30. Walter J. Bell & Louis M. Dalberto & Marshall L. Fisher & Arnold J. Greenfield & R. Jaikumar & Pradeep Kedia & Robert G. Mack & Paul J. Prutzman, 1983. "Improving the Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer," Interfaces, INFORMS, vol. 13(6), pages 4-23, December.
    31. Jeuland, Abel P & Narasimhan, Chakravarthi, 1985. "Dealing-Temporary Price Cuts-by Seller as a Buyer Discrimination Mechanism," The Journal of Business, University of Chicago Press, vol. 58(3), pages 295-308, July.
    32. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Tian & Wu, Meng & Zhu, Stuart X., 2019. "Pricing and ordering by a loss averse newsvendor with reference dependence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 343-365.
    2. Coelho, Leandro Callegari & De Maio, Annarita & Laganà, Demetrio, 2020. "A variable MIP neighborhood descent for the multi-attribute inventory routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    3. Archetti, Claudia & Coelho, Leandro C. & Grazia Speranza, M., 2019. "An exact algorithm for the inventory routing problem with logistic ratio," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 96-107.
    4. Ba, Luyao & Xie, Yangyang & Ma, Lijun, 2023. "Finite-horizon joint inventory-pricing optimization with non-concave demand and lost sales," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    5. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayarshad, Hamid R. & Chow, Joseph Y.J., 2015. "A scalable non-myopic dynamic dial-a-ride and pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 539-554.
    2. Joseph Y. J. Chow & Hamid R. Sayarshad, 2016. "Reference Policies for Non-myopic Sequential Network Design and Timing Problems," Networks and Spatial Economics, Springer, vol. 16(4), pages 1183-1209, December.
    3. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    4. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    5. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    6. Sayarshad, Hamid R. & Gao, H. Oliver, 2020. "Optimizing dynamic switching between fixed and flexible transit services with an idle-vehicle relocation strategy and reductions in emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 198-214.
    7. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    8. Yves Crama & Mahmood Rezaei & Martin Savelsbergh & Tom Van Woensel, 2018. "Stochastic Inventory Routing for Perishable Products," Transportation Science, INFORMS, vol. 52(3), pages 526-546, June.
    9. Ketzenberg, Michael E. & Metters, Richard D., 2020. "Adapting operations to new information technology: A failed “internet of things” application," Omega, Elsevier, vol. 92(C).
    10. Chiu, Agustín & Angulo, Gustavo & Larrain, Homero, 2024. "Optimizing the long-term costs of an Inventory Routing Problem using linear relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    11. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    12. Bertazzi, Luca & Bosco, Adamo & Laganà, Demetrio, 2015. "Managing stochastic demand in an Inventory Routing Problem with transportation procurement," Omega, Elsevier, vol. 56(C), pages 112-121.
    13. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    14. Yugang Yu & Chengbin Chu & Haoxun Chen & Feng Chu, 2012. "Large scale stochastic inventory routing problems with split delivery and service level constraints," Annals of Operations Research, Springer, vol. 197(1), pages 135-158, August.
    15. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
    16. Alejandro Toriello & George Nemhauser & Martin Savelsbergh, 2010. "Decomposing inventory routing problems with approximate value functions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 718-727, December.
    17. Nicola Secomandi & François Margot, 2009. "Reoptimization Approaches for the Vehicle-Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 57(1), pages 214-230, February.
    18. Ali Ekici & Okan Örsan Özener & Gültekin Kuyzu, 2015. "Cyclic Delivery Schedules for an Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 817-829, November.
    19. Markov, Iliya & Bierlaire, Michel & Cordeau, Jean-François & Maknoon, Yousef & Varone, Sacha, 2018. "A unified framework for rich routing problems with stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 213-240.
    20. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2022. "A Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision State Rollout Algorithm in Reinforcement Learning," Mathematics, MDPI, vol. 10(15), pages 1-70, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:109:y:2018:i:c:p:83-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.