IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v61y2013i3p578-592.html
   My bibliography  Save this item

Multiarea Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
  2. Anthony Papavasiliou & Yves Smeers, 2017. "Remuneration of Flexibility using Operating Reserve Demand Curves: A Case Study of Belgium," The Energy Journal, , vol. 38(6), pages 105-135, November.
  3. Muñoz, Francisco D. & Suazo-Martínez, Carlos & Pereira, Eduardo & Moreno, Rodrigo, 2021. "Electricity market design for low-carbon and flexible systems: Room for improvement in Chile," Energy Policy, Elsevier, vol. 148(PB).
  4. Kai Pan & Yongpei Guan, 2022. "Integrated Stochastic Optimal Self-Scheduling for Two-Settlement Electricity Markets," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1819-1840, May.
  5. Chao Li & Muhong Zhang & Kory Hedman, 2021. "Extreme Ray Feasibility Cuts for Unit Commitment with Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1037-1055, July.
  6. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
  7. Jianqiu Huang & Kai Pan & Yongpei Guan, 2021. "Multistage Stochastic Power Generation Scheduling Co-Optimizing Energy and Ancillary Services," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 352-369, January.
  8. Majid Al-Gwaiz & Xiuli Chao & Owen Q. Wu, 2017. "Understanding How Generation Flexibility and Renewable Energy Affect Power Market Competition," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 114-131, February.
  9. Sun, Mingyang & Cremer, Jochen & Strbac, Goran, 2018. "A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 546-555.
  10. Site Wang & Harsha Gangammanavar & Sandra Ekşioğlu & Scott J. Mason, 2020. "Statistical estimation of operating reserve requirements using rolling horizon stochastic optimization," Annals of Operations Research, Springer, vol. 292(1), pages 371-397, September.
  11. Lavin, Luke & Murphy, Sinnott & Sergi, Brian & Apt, Jay, 2020. "Dynamic operating reserve procurement improves scarcity pricing in PJM," Energy Policy, Elsevier, vol. 147(C).
  12. De Vos, K. & Stevens, N. & Devolder, O. & Papavasiliou, A. & Hebb, B. & Matthys-Donnadieu, J., 2019. "Dynamic dimensioning approach for operating reserves: Proof of concept in Belgium," Energy Policy, Elsevier, vol. 124(C), pages 272-285.
  13. Li, Chaoshun & Wang, Wenxiao & Wang, Jinwen & Chen, Deshu, 2019. "Network-constrained unit commitment with RE uncertainty and PHES by using a binary artificial sheep algorithm," Energy, Elsevier, vol. 189(C).
  14. Daraeepour, Ali & Patino-Echeverri, Dalia & Conejo, Antonio J., 2019. "Economic and environmental implications of different approaches to hedge against wind production uncertainty in two-settlement electricity markets: A PJM case study," Energy Economics, Elsevier, vol. 80(C), pages 336-354.
  15. Hélène Le Cadre & Anthony Papavasiliou & Yves Smeers, 2015. "Wind Farm Portfolio Optimization under Network Capacity Constraints," Post-Print hal-01007992, HAL.
  16. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
  17. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
  18. Anthony Papavasiliou, 2021. "An Overview of Probabilistic Dimensioning of Frequency Restoration Reserves with a Focus on the Greek Electricity Market," Energies, MDPI, vol. 14(18), pages 1-19, September.
  19. Krishna, Attoti Bharath & Abhyankar, Abhijit R., 2023. "Time-coupled day-ahead wind power scenario generation: A combined regular vine copula and variance reduction method," Energy, Elsevier, vol. 265(C).
  20. Waite, Michael & Modi, Vijay, 2016. "Modeling wind power curtailment with increased capacity in a regional electricity grid supplying a dense urban demand," Applied Energy, Elsevier, vol. 183(C), pages 299-317.
  21. Noori, Ehsan & Khazaei, Ehsan & Tavaro, Mehdi & Bardideh, Farhad, 2019. "Economically Operation of Power Utilities Base on MILP Approach," MPRA Paper 95910, University Library of Munich, Germany.
  22. Álvaro Lorca & X. Andy Sun & Eugene Litvinov & Tongxin Zheng, 2016. "Multistage Adaptive Robust Optimization for the Unit Commitment Problem," Operations Research, INFORMS, vol. 64(1), pages 32-51, February.
  23. David Schönheit & Dominik Möst, 2019. "The Effect of Offshore Wind Capacity Expansion on Uncertainties in Germany’s Day-Ahead Wind Energy Forecasts," Energies, MDPI, vol. 12(13), pages 1-23, July.
  24. ARAVENA, Ignacio & PAPAVASILIOU, Anthony, 2016. "An Asynchronous Distributed Algorithm for solving Stochastic Unit Commitment," LIDAM Discussion Papers CORE 2016038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  25. Victor M. Zavala & Kibaek Kim & Mihai Anitescu & John Birge, 2017. "A Stochastic Electricity Market Clearing Formulation with Consistent Pricing Properties," Operations Research, INFORMS, vol. 65(3), pages 557-576, June.
  26. Varawala, Lamia & Dán, György & Hesamzadeh, Mohammad Reza & Baldick, Ross, 2023. "A generalised approach for efficient computation of look ahead security constrained optimal power flow," European Journal of Operational Research, Elsevier, vol. 310(2), pages 477-494.
  27. Munoz, F.D. & Hobbs, B.F. & Watson, J.-P., 2016. "New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints," European Journal of Operational Research, Elsevier, vol. 248(3), pages 888-898.
  28. Ambrosius, Mirjam & Grimm, Veronika & Kleinert, Thomas & Liers, Frauke & Schmidt, Martin & Zöttl, Gregor, 2020. "Endogenous price zones and investment incentives in electricity markets: An application of multilevel optimization with graph partitioning," Energy Economics, Elsevier, vol. 92(C).
  29. Hohl, Cody & Lo Prete, Chiara & Radhakrishnan, Ashish & Webster, Mort, 2023. "Intraday markets, wind integration and uplift payments in a regional U.S. power system," Energy Policy, Elsevier, vol. 175(C).
  30. Jeanne Aslak Petersen & Ditte Heide-Jørgensen & Nina Detlefsen & Trine Boomsma, 2016. "Short-term balancing of supply and demand in an electricity system: forecasting and scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 449-473, March.
  31. Anthony Papavasiliou & Yves Smeers, 2017. "Remuneration of Flexibility using Operating Reserve Demand Curves: A Case Study of Belgium," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
  32. Aghaei, Jamshid & Nikoobakht, Ahmad & Siano, Pierluigi & Nayeripour, Majid & Heidari, Alireza & Mardaneh, Mohammad, 2016. "Exploring the reliability effects on the short term AC security-constrained unit commitment: A stochastic evaluation," Energy, Elsevier, vol. 114(C), pages 1016-1032.
  33. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
  34. Wang, Bo & Wang, Shuming & Zhou, Xianzhong & Watada, Junzo, 2016. "Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties," Energy, Elsevier, vol. 111(C), pages 18-31.
  35. Melamed, Michal & Ben-Tal, Aharon & Golany, Boaz, 2018. "A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source," Renewable Energy, Elsevier, vol. 118(C), pages 909-917.
  36. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.
  37. Doubleday, Kate & Lara, José Daniel & Hodge, Bri-Mathias, 2022. "Investigation of stochastic unit commitment to enable advanced flexibility measures for high shares of solar PV," Applied Energy, Elsevier, vol. 321(C).
  38. Francisco Munoz & Jean-Paul Watson, 2015. "A scalable solution framework for stochastic transmission and generation planning problems," Computational Management Science, Springer, vol. 12(4), pages 491-518, October.
  39. Han, Jinil & Papavasiliou, Anthony, 2015. "Congestion management through topological corrections: A case study of Central Western Europe," Energy Policy, Elsevier, vol. 86(C), pages 470-482.
  40. Luckny Zéphyr & C. Lindsay Anderson, 2018. "Stochastic dynamic programming approach to managing power system uncertainty with distributed storage," Computational Management Science, Springer, vol. 15(1), pages 87-110, January.
  41. Chen, J.J. & Wu, Q.H. & Zhang, L.L. & Wu, P.Z., 2017. "Multi-objective mean–variance–skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties," European Journal of Operational Research, Elsevier, vol. 263(2), pages 719-732.
  42. Jeanne Aslak Petersen & Ditte Mølgård Heide-Jørgensen & Nina Kildegaard Detlefsen & Trine Krogh Boomsma, 2016. "Short-term balancing of supply and demand in an electricity system: forecasting and scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 449-473, March.
  43. Trine K. Boomsma, 2019. "Comments on: A comparative study of time aggregation techniques in relation to power capacity-expansion modeling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 406-409, October.
  44. Meng, Fanyi & Bai, Yang & Jin, Jingliang, 2021. "An advanced real-time dispatching strategy for a distributed energy system based on the reinforcement learning algorithm," Renewable Energy, Elsevier, vol. 178(C), pages 13-24.
  45. Heejung Park, 2022. "A Unit Commitment Model Considering Feasibility of Operating Reserves under Stochastic Optimization Framework," Energies, MDPI, vol. 15(17), pages 1-22, August.
  46. Dirin, Sepehr & Rahimiyan, Morteza & Baringo, Luis, 2023. "Optimal offering strategy for wind-storage systems under correlated wind production," Applied Energy, Elsevier, vol. 333(C).
  47. Yonghan Feng & Sarah Ryan, 2016. "Solution sensitivity-based scenario reduction for stochastic unit commitment," Computational Management Science, Springer, vol. 13(1), pages 29-62, January.
  48. Ilias G. Marneris & Pandelis N. Biskas & Anastasios G. Bakirtzis, 2017. "Stochastic and Deterministic Unit Commitment Considering Uncertainty and Variability Reserves for High Renewable Integration," Energies, MDPI, vol. 10(1), pages 1-25, January.
  49. Pierre Pinson, 2014. "Comments on: Space-time wind speed forecasting for improved power system dispatch," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 26-29, March.
  50. Fattahi, Salar & Ashraphijuo, Morteza & Lavaei, Javad & Atamtürk, Alper, 2017. "Conic relaxations of the unit commitment problem," Energy, Elsevier, vol. 134(C), pages 1079-1095.
  51. Zhang, Qian & Qi, Jingwen & Zhen, Lu, 2023. "Optimization of integrated energy system considering multi-energy collaboration in carbon-free hydrogen port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
  52. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
  53. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
  54. Ali Kakhbod & Asuman Ozdaglar & Ian Schneider, 2021. "Selling Wind," The Energy Journal, , vol. 42(1), pages 1-38, January.
  55. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
  56. Zora Luburić & Hrvoje Pandžić & Tomislav Plavšić, 2017. "Assessment of Energy Storage Operation in Vertically Integrated Utility and Electricity Market," Energies, MDPI, vol. 10(5), pages 1-16, May.
  57. Schulze, Tim & Grothey, Andreas & McKinnon, Ken, 2017. "A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 247-259.
  58. Conor Sweeney & Ricardo J. Bessa & Jethro Browell & Pierre Pinson, 2020. "The future of forecasting for renewable energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(2), March.
  59. Didem Sarı Ay & Sarah M. Ryan, 2019. "Observational data-based quality assessment of scenario generation for stochastic programs," Computational Management Science, Springer, vol. 16(3), pages 521-540, July.
  60. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.