IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v59y2013i2p305-322.html
   My bibliography  Save this item

A Nonparametric Approach to Modeling Choice with Limited Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Côté, Jean-François & Mansini, Renata & Raffaele, Alice, 2024. "Multi-period time window assignment for attended home delivery," European Journal of Operational Research, Elsevier, vol. 316(1), pages 295-309.
  2. Gerardo Berbeglia & Alvaro Flores & Guillermo Gallego, 2021. "The Refined Assortment Optimization Problem," Papers 2102.03043, arXiv.org.
  3. Sanjay Dominik Jena & Andrea Lodi & Claudio Sole, 2021. "On the estimation of discrete choice models to capture irrational customer behaviors," Papers 2109.03882, arXiv.org.
  4. Ilan Lobel, 2021. "Revenue Management and the Rise of the Algorithmic Economy," Management Science, INFORMS, vol. 67(9), pages 5389-5398, September.
  5. Sheng Liu & Long He & Zuo-Jun Max Shen, 2021. "On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predictors," Management Science, INFORMS, vol. 67(7), pages 4095-4119, July.
  6. Felipe Caro & Victor Martínez-de-Albéniz & Paat Rusmevichientong, 2014. "The Assortment Packing Problem: Multiperiod Assortment Planning for Short-Lived Products," Management Science, INFORMS, vol. 60(11), pages 2701-2721, November.
  7. Ningyuan Chen & Guillermo Gallego & Zhuodong Tang, 2019. "The Use of Binary Choice Forests to Model and Estimate Discrete Choices," Papers 1908.01109, arXiv.org, revised Apr 2024.
  8. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
  9. Vinit Kumar Mishra & Karthik Natarajan & Dhanesh Padmanabhan & Chung-Piaw Teo & Xiaobo Li, 2014. "On Theoretical and Empirical Aspects of Marginal Distribution Choice Models," Management Science, INFORMS, vol. 60(6), pages 1511-1531, June.
  10. Ali Aouad & Daniela Saban, 2023. "Online Assortment Optimization for Two-Sided Matching Platforms," Management Science, INFORMS, vol. 69(4), pages 2069-2087, April.
  11. Feng, Xiao & Li, Yuyu & Huang, Bo, 2023. "Research on manufacturer's investment strategy and green credit policy for new energy vehicles based on consumers' preferences and technology adoption," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
  12. Resul Aydemir & Mehmet Melih Değirmenci & Abdullah Bilgin, 2023. "Estimation of passenger sell-up rates in airline revenue management by considering the effect of fare class availability," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(6), pages 501-513, December.
  13. Sanjay Dominik Jena & Andrea Lodi & Claudio Sole, 2022. "On the Estimation of Discrete Choice Models to Capture Irrational Customer Behaviors," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1606-1625, May.
  14. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
  15. Ali Aouad & Retsef Levi & Danny Segev, 2019. "Approximation Algorithms for Dynamic Assortment Optimization Models," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 487-511, May.
  16. Ali Aouad & Vivek Farias & Retsef Levi, 2021. "Assortment Optimization Under Consider-Then-Choose Choice Models," Management Science, INFORMS, vol. 67(6), pages 3368-3386, June.
  17. Kumar Goutam & Vineet Goyal & Agathe Soret, 2019. "A Generalized Markov Chain Model to Capture Dynamic Preferences and Choice Overload," Papers 1911.06716, arXiv.org, revised Dec 2020.
  18. Marshall Fisher & Santiago Gallino & Jun Li, 2018. "Competition-Based Dynamic Pricing in Online Retailing: A Methodology Validated with Field Experiments," Management Science, INFORMS, vol. 64(6), pages 2496-2514, June.
  19. Shaojie Tang & Jing Yuan, 2021. "Cascade Submodular Maximization: Question Selection and Sequencing in Online Personality Quiz," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2143-2161, July.
  20. Aydın Alptekinoğlu & John H. Semple, 2021. "Heteroscedastic Exponomial Choice," Operations Research, INFORMS, vol. 69(3), pages 841-858, May.
  21. Srikanth Jagabathula & Paat Rusmevichientong, 2017. "Nonparametric Joint Assortment and Price Choice Model," Management Science, INFORMS, vol. 63(9), pages 3128-3145, September.
  22. James M. Davis & Guillermo Gallego & Huseyin Topaloglu, 2014. "Assortment Optimization Under Variants of the Nested Logit Model," Operations Research, INFORMS, vol. 62(2), pages 250-273, April.
  23. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
  24. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
  25. Han Bleichrodt & Martin Filko & Amit Kothiyal & Peter P. Wakker, 2017. "Making Case-Based Decision Theory Directly Observable," American Economic Journal: Microeconomics, American Economic Association, vol. 9(1), pages 123-151, February.
  26. Zhongze Cai & Hanzhao Wang & Kalyan Talluri & Xiaocheng Li, 2022. "Deep Learning for Choice Modeling," Papers 2208.09325, arXiv.org.
  27. Guillermo Gallego & Huseyin Topaloglu, 2014. "Constrained Assortment Optimization for the Nested Logit Model," Management Science, INFORMS, vol. 60(10), pages 2583-2601, October.
  28. Zhen-Yu Chen & Xin-Li Liu & Li-Ping Yin, 2023. "Data-driven product configuration improvement and product line restructuring with text mining and multitask learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2043-2059, April.
  29. Guiyun Feng & Xiaobo Li & Zizhuo Wang, 2017. "Technical Note—On the Relation Between Several Discrete Choice Models," Operations Research, INFORMS, vol. 65(6), pages 1516-1525, December.
  30. Dimitris Bertsimas & Allison O'Hair, 2013. "Learning Preferences Under Noise and Loss Aversion: An Optimization Approach," Operations Research, INFORMS, vol. 61(5), pages 1190-1199, October.
  31. Jimmy Q. Li & Paat Rusmevichientong & Duncan Simester & John N. Tsitsiklis & Spyros I. Zoumpoulis, 2015. "The Value of Field Experiments," Management Science, INFORMS, vol. 61(7), pages 1722-1740, July.
  32. Shivaram Subramanian & Pavithra Harsha, 2021. "Demand Modeling in the Presence of Unobserved Lost Sales," Management Science, INFORMS, vol. 67(6), pages 3803-3833, June.
  33. Stacey Mumbower & Laurie A. Garrow, 2014. "Data Set —Online Pricing Data for Multiple U.S. Carriers," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 198-203, May.
  34. Aditya Jain & Nils Rudi & Tong Wang, 2015. "Demand Estimation and Ordering Under Censoring: Stock-Out Timing Is (Almost) All You Need," Operations Research, INFORMS, vol. 63(1), pages 134-150, February.
  35. Jeffrey P. Newman & Mark E. Ferguson & Laurie A. Garrow & Timothy L. Jacobs, 2014. "Estimation of Choice-Based Models Using Sales Data from a Single Firm," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 184-197, May.
  36. Zhenzhen Yan & Karthik Natarajan & Chung Piaw Teo & Cong Cheng, 2022. "A Representative Consumer Model in Data-Driven Multiproduct Pricing Optimization," Management Science, INFORMS, vol. 68(8), pages 5798-5827, August.
  37. Xi Chen & Chao Shi & Yining Wang & Yuan Zhou, 2021. "Dynamic Assortment Planning Under Nested Logit Models," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 85-102, January.
  38. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
  39. Ruxian Wang & Maqbool Dada & Ozge Sahin, 2019. "Pricing Ancillary Service Subscriptions," Management Science, INFORMS, vol. 65(10), pages 4712-4732, October.
  40. Hans Corsten & Michael Hopf & Benedikt Kasper & Clemens Thielen, 2018. "Assortment planning for multiple chain stores," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 875-912, October.
  41. Yi-Chun Chen & Velibor V. Mišić, 2022. "Decision Forest: A Nonparametric Approach to Modeling Irrational Choice," Management Science, INFORMS, vol. 68(10), pages 7090-7111, October.
  42. Shipra Agrawal & Vashist Avadhanula & Vineet Goyal & Assaf Zeevi, 2019. "MNL-Bandit: A Dynamic Learning Approach to Assortment Selection," Operations Research, INFORMS, vol. 67(5), pages 1453-1485, September.
  43. Amr Farahat & Woonghee Tim Huh & Hongmin Li, 2019. "On the Relationship Between Quantity Precommitment and Cournot Games," Operations Research, INFORMS, vol. 67(1), pages 109-122, January.
  44. Zhen-Yu Chen & Zhi-Ping Fan & Minghe Sun, 2023. "Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 158-177, January.
  45. Xiyuan Ren & Joseph Y. J. Chow & Prateek Bansal, 2023. "Estimating a k-modal nonparametric mixed logit model with market-level data," Papers 2309.13159, arXiv.org, revised Aug 2024.
  46. Garrett van Ryzin & Gustavo Vulcano, 2015. "A Market Discovery Algorithm to Estimate a General Class of Nonparametric Choice Models," Management Science, INFORMS, vol. 61(2), pages 281-300, February.
  47. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
  48. Catherine Cleophas & Daniel Kadatz & Sebastian Vock, 2017. "Resilient revenue management: a literature survey of recent theoretical advances," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(5), pages 483-498, October.
  49. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
  50. V Kumar & Amalesh Sharma & Shaphali Gupta, 2017. "Accessing the influence of strategic marketing research on generating impact: moderating roles of models, journals, and estimation approaches," Journal of the Academy of Marketing Science, Springer, vol. 45(2), pages 164-185, March.
  51. Amr Farahat & Joonkyum Lee, 2018. "The Multiproduct Newsvendor Problem with Customer Choice," Operations Research, INFORMS, vol. 66(1), pages 123-136, January.
  52. Srikanth Jagabathula & Gustavo Vulcano, 2018. "A Partial-Order-Based Model to Estimate Individual Preferences Using Panel Data," Management Science, INFORMS, vol. 64(4), pages 1609-1628, April.
  53. Ruxian Wang & Ozge Sahin, 2018. "The Impact of Consumer Search Cost on Assortment Planning and Pricing," Management Science, INFORMS, vol. 64(8), pages 3649-3666, August.
  54. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
  55. Shan Jiang & Shu-Cherng Fang & Qingwei Jin, 2021. "Sparse Solutions by a Quadratically Constrained ℓ q (0 < q < 1) Minimization Model," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 511-530, May.
  56. Sebastian Vock & Laurie A. Garrow & Catherine Cleophas, 2022. "Clustering as an approach for creating data-driven perspectives on air travel itineraries," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(2), pages 212-227, April.
  57. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
  58. Morad Hosseinalifam & Gilles Savard & Patrice Marcotte, 2016. "Computing booking limits under a non-parametric demand model: A mathematical programming approach," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(2), pages 170-184, April.
  59. Dimitris Bertsimas & Velibor V. Mišić, 2019. "Exact First-Choice Product Line Optimization," Operations Research, INFORMS, vol. 67(3), pages 651-670, May.
  60. Mehrani, Saharnaz & Sefair, Jorge A., 2022. "Robust assortment optimization under sequential product unavailability," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1027-1043.
  61. Johannes F. Jörg & Catherine Cleophas, 2022. "Nonparametric estimation of customer segments from censored sales panel data," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(4), pages 393-417, August.
  62. Robert Klein & Michael Neugebauer & Dimitri Ratkovitch & Claudius Steinhardt, 2019. "Differentiated Time Slot Pricing Under Routing Considerations in Attended Home Delivery," Service Science, INFORMS, vol. 53(1), pages 236-255, February.
  63. Gönsch, Jochen, 2017. "A survey on risk-averse and robust revenue management," European Journal of Operational Research, Elsevier, vol. 263(2), pages 337-348.
  64. Garrett van Ryzin & Gustavo Vulcano, 2017. "Technical Note—An Expectation-Maximization Method to Estimate a Rank-Based Choice Model of Demand," Operations Research, INFORMS, vol. 65(2), pages 396-407, April.
  65. Jiapeng Liu & Miłosz Kadziński & Xiuwu Liao, 2023. "Modeling Contingent Decision Behavior: A Bayesian Nonparametric Preference-Learning Approach," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 764-785, July.
  66. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
  67. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
  68. Velibor V. Miv{s}i'c & Georgia Perakis, 2019. "Data Analytics in Operations Management: A Review," Papers 1905.00556, arXiv.org.
  69. Philipp Bartke & Natalia Kliewer & Catherine Cleophas, 2018. "Benchmarking filter-based demand estimates for airline revenue management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(1), pages 57-88, March.
  70. Jacob B. Feldman & Huseyin Topaloglu, 2017. "Revenue Management Under the Markov Chain Choice Model," Operations Research, INFORMS, vol. 65(5), pages 1322-1342, October.
  71. Francis de Véricourt & Georgia Perakis, 2020. "Frontiers in Service Science: The Management of Data Analytics Services: New Challenges and Future Directions," Service Science, INFORMS, vol. 12(4), pages 121-129, December.
  72. Qi Feng & J. George Shanthikumar, 2022. "Developing operations management data analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4544-4557, December.
  73. John H. Roberts, 2018. "Practice Prize Report: The 2016 ISMS Gary Lilien Practice Prize Competition," Marketing Science, INFORMS, vol. 37(5), pages 685-687, September.
  74. Barbier, Thibault & Anjos, Miguel F. & Cirinei, Fabien & Savard, Gilles, 2020. "Product-closing approximation for ranking-based choice network revenue management," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1002-1017.
  75. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
  76. Nathan Kallus & Madeleine Udell, 2020. "Dynamic Assortment Personalization in High Dimensions," Operations Research, INFORMS, vol. 68(4), pages 1020-1037, July.
  77. Dirk Sierag & Rob Mei, 2016. "Single-leg choice-based revenue management: a robust optimisation approach," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(6), pages 454-467, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.