IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i1p295-309.html
   My bibliography  Save this article

Multi-period time window assignment for attended home delivery

Author

Listed:
  • Côté, Jean-François
  • Mansini, Renata
  • Raffaele, Alice

Abstract

We study a multi-period stochastic variant of the Time Window Assignment Vehicle Routing Problem, where customers’ demands, locations, and service times are uncertain. Customers are partitioned into geographical zones, each of which has to be visited a predetermined number of times over a planning period of several days. Whenever a zone is visited, a time window is assigned. Time windows are decided before knowing customers and their demands. A fleet of homogeneous vehicles is available to serve customers each day. At a tactical level, the problem looks for a static time window assignment that minimizes the expected traveling costs plus the expected penalty costs for unserved customers. We propose a two-stage formulation and a solution approach, which relies on the Sample Average Approximation Method, while encompassing a perturbation method to assign time windows in the first stage and an Adaptive Large Neighborhood Search to optimize routes in the second stage. We experimentally evaluate three instance sets, including real ones from a Canadian company, comparing our results to lower bounds from the exact solution of a deterministic equivalent formulation over a finite number of scenarios. Our method outperforms the manual approach used by the company.

Suggested Citation

  • Côté, Jean-François & Mansini, Renata & Raffaele, Alice, 2024. "Multi-period time window assignment for attended home delivery," European Journal of Operational Research, Elsevier, vol. 316(1), pages 295-309.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:295-309
    DOI: 10.1016/j.ejor.2024.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724000407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Subramanyam, Anirudh & Wang, Akang & Gounaris, Chrysanthos E., 2018. "A scenario decomposition algorithm for strategic time window assignment vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 296-317.
    3. Andreas Stenger & Daniele Vigo & Steffen Enz & Michael Schwind, 2013. "An Adaptive Variable Neighborhood Search Algorithm for a Vehicle Routing Problem Arising in Small Package Shipping," Transportation Science, INFORMS, vol. 47(1), pages 64-80, February.
    4. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    5. Kevin Dalmeijer & Guy Desaulniers, 2021. "Addressing Orientation Symmetry in the Time Window Assignment Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 495-510, May.
    6. Potvin, Jean-Yves & Rousseau, Jean-Marc, 1993. "A parallel route building algorithm for the vehicle routing and scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 66(3), pages 331-340, May.
    7. Vivek F. Farias & Srikanth Jagabathula & Devavrat Shah, 2013. "A Nonparametric Approach to Modeling Choice with Limited Data," Management Science, INFORMS, vol. 59(2), pages 305-322, December.
    8. Ann Melissa Campbell & Martin Savelsbergh, 2006. "Incentive Schemes for Attended Home Delivery Services," Transportation Science, INFORMS, vol. 40(3), pages 327-341, August.
    9. Chris Groër & Bruce Golden & Edward Wasil, 2009. "The Consistent Vehicle Routing Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 630-643, February.
    10. Niels Agatz & Yingjie Fan & Daan Stam, 2021. "The Impact of Green Labels on Time Slot Choice and Operational Sustainability," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2285-2303, July.
    11. Ehmke, Jan Fabian & Campbell, Ann Melissa, 2014. "Customer acceptance mechanisms for home deliveries in metropolitan areas," European Journal of Operational Research, Elsevier, vol. 233(1), pages 193-207.
    12. Remy Spliet & Said Dabia & Tom Van Woensel, 2018. "The Time Window Assignment Vehicle Routing Problem with Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 52(2), pages 261-276, March.
    13. Köhler, Charlotte & Ehmke, Jan Fabian & Campbell, Ann Melissa, 2020. "Flexible time window management for attended home deliveries," Omega, Elsevier, vol. 91(C).
    14. Remy Spliet & Adriana F. Gabor, 2015. "The Time Window Assignment Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 721-731, November.
    15. Niels Agatz & Ann Campbell & Moritz Fleischmann & Martin Savelsbergh, 2011. "Time Slot Management in Attended Home Delivery," Transportation Science, INFORMS, vol. 45(3), pages 435-449, August.
    16. Spliet, Remy & Desaulniers, Guy, 2015. "The discrete time window assignment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 379-391.
    17. Maaike Hoogeboom & Yossiri Adulyasak & Wout Dullaert & Patrick Jaillet, 2021. "The Robust Vehicle Routing Problem with Time Window Assignments," Transportation Science, INFORMS, vol. 55(2), pages 395-413, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waßmuth, Katrin & Köhler, Charlotte & Agatz, Niels & Fleischmann, Moritz, 2023. "Demand management for attended home delivery—A literature review," European Journal of Operational Research, Elsevier, vol. 311(3), pages 801-815.
    2. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    3. Visser, T.R. & Savelsbergh, M.W.P., 2019. "Strategic Time Slot Management: A Priori Routing for Online Grocery Retailing," Econometric Institute Research Papers EI2019-04, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Bruck, Bruno P. & Cordeau, Jean-François & Iori, Manuel, 2018. "A practical time slot management and routing problem for attended home services," Omega, Elsevier, vol. 81(C), pages 208-219.
    5. Abdollahi, Mohammad & Yang, Xinan & Nasri, Moncef Ilies & Fairbank, Michael, 2023. "Demand management in time-slotted last-mile delivery via dynamic routing with forecast orders," European Journal of Operational Research, Elsevier, vol. 309(2), pages 704-718.
    6. Subramanyam, Anirudh & Wang, Akang & Gounaris, Chrysanthos E., 2018. "A scenario decomposition algorithm for strategic time window assignment vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 296-317.
    7. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    8. Yang, Meng & Ni, Yaodong & Song, Qinyu, 2022. "Optimizing driver consistency in the vehicle routing problem under uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. van der Hagen, L. & Agatz, N.A.H. & Spliet, R. & Visser, T.R. & Kok, A.L., 2022. "Machine Learning-Based Feasibility Checks for Dynamic Time Slot Management," ERIM Report Series Research in Management ERS-2022-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    11. Neves-Moreira, Fábio & Pereira da Silva, Diogo & Guimarães, Luís & Amorim, Pedro & Almada-Lobo, Bernardo, 2018. "The time window assignment vehicle routing problem with product dependent deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 163-183.
    12. Marlin W. Ulmer & Barrett W. Thomas, 2019. "Enough Waiting for the Cable Guy—Estimating Arrival Times for Service Vehicle Routing," Transportation Science, INFORMS, vol. 53(3), pages 897-916, May.
    13. Kevin Dalmeijer & Guy Desaulniers, 2021. "Addressing Orientation Symmetry in the Time Window Assignment Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 495-510, May.
    14. Bruno P. Bruck & Filippo Castegini & Jean-François Cordeau & Manuel Iori & Tommaso Poncemi & Dario Vezzali, 2020. "A Decision Support System for Attended Home Services," Interfaces, INFORMS, vol. 50(2), pages 137-152, March.
    15. Avraham, Edison & Raviv, Tal, 2021. "The steady-state mobile personnel booking problem," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 266-288.
    16. Robert Klein & Michael Neugebauer & Dimitri Ratkovitch & Claudius Steinhardt, 2019. "Differentiated Time Slot Pricing Under Routing Considerations in Attended Home Delivery," Service Science, INFORMS, vol. 53(1), pages 236-255, February.
    17. Haider, Zulqarnain & Hu, Yujie & Charkhgard, Hadi & Himmelgreen, David & Kwon, Changhyun, 2022. "Creating grocery delivery hubs for food deserts at local convenience stores via spatial and temporal consolidation," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    18. Strauss, Arne & Gülpınar, Nalan & Zheng, Yijun, 2021. "Dynamic pricing of flexible time slots for attended home delivery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1022-1041.
    19. Yang, Xinan & Strauss, Arne K., 2017. "An approximate dynamic programming approach to attended home delivery management," European Journal of Operational Research, Elsevier, vol. 263(3), pages 935-945.
    20. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:295-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.