IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2102.03043.html
   My bibliography  Save this paper

The Refined Assortment Optimization Problem

Author

Listed:
  • Gerardo Berbeglia
  • Alvaro Flores
  • Guillermo Gallego

Abstract

We introduce the refined assortment optimization problem where a firm may decide to make some of its products harder to get instead of making them unavailable as in the traditional assortment optimization problem. Airlines, for example, offer fares with severe restrictions rather than making them unavailable. This is a more subtle way of handling the trade-off between demand induction and demand cannibalization. For the latent class MNL model, a firm that engages in refined assortment optimization can make up to $\min(n,m)$ times more than one that insists on traditional assortment optimization, where $n$ is the number of products and $m$ the number of customer types. Surprisingly, the revenue-ordered assortment heuristic has the same performance guarantees relative to {\em personalized} refined assortment optimization as it does to traditional assortment optimization. Based on this finding, we construct refinements of the revenue-order heuristic and measure their improved performance relative to the revenue-ordered assortment and the optimal traditional assortment optimization problem. We also provide tight bounds on the ratio of the expected revenues for the refined versus the traditional assortment optimization for some well known discrete choice models.

Suggested Citation

  • Gerardo Berbeglia & Alvaro Flores & Guillermo Gallego, 2021. "The Refined Assortment Optimization Problem," Papers 2102.03043, arXiv.org.
  • Handle: RePEc:arx:papers:2102.03043
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2102.03043
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Spence, 1976. "Product Selection, Fixed Costs, and Monopolistic Competition," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 43(2), pages 217-235.
    2. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    3. Paola Manzini & Marco Mariotti, 2014. "Stochastic Choice and Consideration Sets," Econometrica, Econometric Society, vol. 82(3), pages 1153-1176, May.
    4. Juan José Miranda Bront & Isabel Méndez-Díaz & Gustavo Vulcano, 2009. "A Column Generation Algorithm for Choice-Based Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 769-784, June.
    5. Flores, Alvaro & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2019. "Assortment optimization under the Sequential Multinomial Logit Model," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1052-1064.
    6. Jose Blanchet & Guillermo Gallego & Vineet Goyal, 2016. "A Markov Chain Approximation to Choice Modeling," Operations Research, INFORMS, vol. 64(4), pages 886-905, August.
    7. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    8. Guillermo Gallego & Anran Li & Van-Anh Truong & Xinshang Wang, 2020. "Approximation Algorithms for Product Framing and Pricing," Operations Research, INFORMS, vol. 68(1), pages 134-160, January.
    9. Vivek F. Farias & Srikanth Jagabathula & Devavrat Shah, 2013. "A Nonparametric Approach to Modeling Choice with Limited Data," Management Science, INFORMS, vol. 59(2), pages 305-322, December.
    10. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    11. Guiyun Feng & Xiaobo Li & Zizhuo Wang, 2017. "Technical Note—On the Relation Between Several Discrete Choice Models," Operations Research, INFORMS, vol. 65(6), pages 1516-1525, December.
    12. R. L. Plackett, 1975. "The Analysis of Permutations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(2), pages 193-202, June.
    13. Juan Feng & Hemant K. Bhargava & David M. Pennock, 2007. "Implementing Sponsored Search in Web Search Engines: Computational Evaluation of Alternative Mechanisms," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 137-148, February.
    14. Nan Liu & Yuhang Ma & Huseyin Topaloglu, 2020. "Assortment Optimization Under the Multinomial Logit Model with Sequential Offerings," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 835-853, July.
    15. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    16. Gallego, Guillermo & Li, Anran & Truong, Van-Anh & Wang, Xinshang, 2020. "Approximation algorithms for product framing and pricing," LSE Research Online Documents on Economics 101983, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Will Ma, 2023. "When Is Assortment Optimization Optimal?," Management Science, INFORMS, vol. 69(4), pages 2088-2105, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    2. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
    3. Mehrani, Saharnaz & Sefair, Jorge A., 2022. "Robust assortment optimization under sequential product unavailability," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1027-1043.
    4. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    5. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
    6. Ali Aouad & Daniela Saban, 2023. "Online Assortment Optimization for Two-Sided Matching Platforms," Management Science, INFORMS, vol. 69(4), pages 2069-2087, April.
    7. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    8. Julia Heger & Robert Klein, 2024. "Assortment optimization: a systematic literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1099-1161, December.
    9. Guillermo Gallego & Gerardo Berbeglia, 2021. "The Limits of Personalization in Assortment Optimization," Papers 2109.14861, arXiv.org, revised Jun 2024.
    10. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    11. Flores, Alvaro & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2019. "Assortment optimization under the Sequential Multinomial Logit Model," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1052-1064.
    12. Zhenzhen Yan & Karthik Natarajan & Chung Piaw Teo & Cong Cheng, 2022. "A Representative Consumer Model in Data-Driven Multiproduct Pricing Optimization," Management Science, INFORMS, vol. 68(8), pages 5798-5827, August.
    13. Shipra Agrawal & Vashist Avadhanula & Vineet Goyal & Assaf Zeevi, 2019. "MNL-Bandit: A Dynamic Learning Approach to Assortment Selection," Operations Research, INFORMS, vol. 67(5), pages 1453-1485, September.
    14. Dimitris Bertsimas & Velibor V. Mišić, 2019. "Exact First-Choice Product Line Optimization," Operations Research, INFORMS, vol. 67(3), pages 651-670, May.
    15. Ali Aouad & Vivek Farias & Retsef Levi, 2021. "Assortment Optimization Under Consider-Then-Choose Choice Models," Management Science, INFORMS, vol. 67(6), pages 3368-3386, June.
    16. Kumar Goutam & Vineet Goyal & Agathe Soret, 2019. "A Generalized Markov Chain Model to Capture Dynamic Preferences and Choice Overload," Papers 1911.06716, arXiv.org, revised Dec 2020.
    17. Yanqiu Ruan & Xiaobo Li & Karthyek Murthy & Karthik Natarajan, 2022. "A Nonparametric Approach with Marginals for Modeling Consumer Choice," Papers 2208.06115, arXiv.org, revised Nov 2024.
    18. Jose Blanchet & Guillermo Gallego & Vineet Goyal, 2016. "A Markov Chain Approximation to Choice Modeling," Operations Research, INFORMS, vol. 64(4), pages 886-905, August.
    19. Santiago R. Balseiro & Antoine Désir, 2023. "Incentive-Compatible Assortment Optimization for Sponsored Products," Management Science, INFORMS, vol. 69(8), pages 4668-4684, August.
    20. Agrawal, Deepak & Pang, Guodong & Kumara, Soundar, 2023. "Preference based scheduling in a healthcare provider network," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1318-1335.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.03043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.