IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v62y2014i2p250-273.html
   My bibliography  Save this article

Assortment Optimization Under Variants of the Nested Logit Model

Author

Listed:
  • James M. Davis

    (School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853)

  • Guillermo Gallego

    (Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)

  • Huseyin Topaloglu

    (School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853)

Abstract

We study a class of assortment optimization problems where customers choose among the offered products according to the nested logit model. There is a fixed revenue associated with each product. The objective is to find an assortment of products to offer so as to maximize the expected revenue per customer. We show that the problem is polynomially solvable when the nest dissimilarity parameters of the choice model are less than one and the customers always make a purchase within the selected nest. Relaxing either of these assumptions renders the problem NP-hard. To deal with the NP-hard cases, we develop parsimonious collections of candidate assortments with worst-case performance guarantees. We also formulate a convex program whose optimal objective value is an upper bound on the optimal expected revenue. Thus, we can compare the expected revenue provided by an assortment with the upper bound on the optimal expected revenue to get a feel for the optimality gap of the assortment. By using this approach, our computational experiments test the performance of the parsimonious collections of candidate assortments that we develop.

Suggested Citation

  • James M. Davis & Guillermo Gallego & Huseyin Topaloglu, 2014. "Assortment Optimization Under Variants of the Nested Logit Model," Operations Research, INFORMS, vol. 62(2), pages 250-273, April.
  • Handle: RePEc:inm:oropre:v:62:y:2014:i:2:p:250-273
    DOI: 10.1287/opre.2014.1256
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2014.1256
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2014.1256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Garrett van Ryzin & Siddharth Mahajan, 1999. "On the Relationship Between Inventory Costs and Variety Benefits in Retail Assortments," Management Science, INFORMS, vol. 45(11), pages 1496-1509, November.
    2. A. Gürhan Kök & Yi Xu, 2011. "Optimal and Competitive Assortments with Endogenous Pricing Under Hierarchical Consumer Choice Models," Management Science, INFORMS, vol. 57(9), pages 1546-1563, February.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    4. Hongmin Li & Woonghee Tim Huh, 2011. "Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 549-563, October.
    5. Juan José Miranda Bront & Isabel Méndez-Díaz & Gustavo Vulcano, 2009. "A Column Generation Algorithm for Choice-Based Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 769-784, June.
    6. A. Gürhan Kök & Marshall L. Fisher & Ramnath Vaidyanathan, 2008. "Assortment Planning: Review of Literature and Industry Practice," International Series in Operations Research & Management Science, in: Narendra Agrawal & Stephen A. Smith (ed.), Retail Supply Chain Management, chapter 0, pages 99-153, Springer.
    7. McFadden, Daniel, 1980. "Econometric Models for Probabilistic Choice among Products," The Journal of Business, University of Chicago Press, vol. 53(3), pages 13-29, July.
    8. Borsch-Supan, Axel, 1990. "On the compatibility of nested logit models with utility maximization," Journal of Econometrics, Elsevier, vol. 43(3), pages 373-388, March.
    9. Paat Rusmevichientong & David Shmoys & Chaoxu Tong & Huseyin Topaloglu, 2014. "Assortment Optimization under the Multinomial Logit Model with Random Choice Parameters," Production and Operations Management, Production and Operations Management Society, vol. 23(11), pages 2023-2039, November.
    10. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    11. Vivek F. Farias & Srikanth Jagabathula & Devavrat Shah, 2013. "A Nonparametric Approach to Modeling Choice with Limited Data," Management Science, INFORMS, vol. 59(2), pages 305-322, December.
    12. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    13. Kenneth E. Train & Daniel L. McFadden & Moshe Ben-Akiva, 1987. "The Demand for Local Telephone Service: A Fully Discrete Model of Residential Calling Patterns and Service Choices," RAND Journal of Economics, The RAND Corporation, vol. 18(1), pages 109-123, Spring.
    14. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    15. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    16. Train, Kenneth E & Ben-Akiva, Moshe & Atherton, Terry, 1989. "Consumption Patterns and Self-selecting Tariffs," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 62-73, February.
    17. Piyush Tiwari & Hiroshi Hasegawa†, 2004. "Demand for Housing in Tokyo: A Discrete Choice Analysis," Regional Studies, Taylor & Francis Journals, vol. 38(1), pages 27-42.
    18. Gérard P. Cachon & Christian Terwiesch & Yi Xu, 2005. "Retail Assortment Planning in the Presence of Consumer Search," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 330-346, August.
    19. Siddharth Mahajan & Garrett van Ryzin, 2001. "Stocking Retail Assortments Under Dynamic Consumer Substitution," Operations Research, INFORMS, vol. 49(3), pages 334-351, June.
    20. Ward Hanson & Kipp Martin, 1996. "Optimizing Multinomial Logit Profit Functions," Management Science, INFORMS, vol. 42(7), pages 992-1003, July.
    21. Lee, Bosang, 1999. "Calling Patterns and Usage of Residential Toll Service under Self-Selecting Tariffs," Journal of Regulatory Economics, Springer, vol. 16(1), pages 45-81, July.
    22. Judith Yates & Daniel F. Mackay, 2006. "Discrete Choice Modelling of Urban Housing Markets: A Critical Review and an Application," Urban Studies, Urban Studies Journal Limited, vol. 43(3), pages 559-581, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    2. Guillermo Gallego & Huseyin Topaloglu, 2014. "Constrained Assortment Optimization for the Nested Logit Model," Management Science, INFORMS, vol. 60(10), pages 2583-2601, October.
    3. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    4. Alfandari, Laurent & Hassanzadeh, Alborz & Ljubic, Ivana, 2020. "An Exact Method for Assortment Optimization under the Nested Logit Model," ESSEC Working Papers WP2001, ESSEC Research Center, ESSEC Business School, revised 2020.
    5. Xi Chen & Chao Shi & Yining Wang & Yuan Zhou, 2021. "Dynamic Assortment Planning Under Nested Logit Models," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 85-102, January.
    6. Wang, Mengmeng & Zhang, Xun & Li, Xiaolong, 2023. "Multiple-purchase choice model: estimation and optimization," International Journal of Production Economics, Elsevier, vol. 265(C).
    7. W. Zachary Rayfield & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "Approximation Methods for Pricing Problems Under the Nested Logit Model with Price Bounds," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 335-357, May.
    8. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    9. Qiu, Jiaqing & Li, Xiangyong & Duan, Yongrui & Chen, Mengxi & Tian, Peng, 2020. "Dynamic assortment in the presence of brand heterogeneity," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    10. Hongmin Li & Scott Webster & Gwangjae Yu, 2020. "Product Design Under Multinomial Logit Choices: Optimization of Quality and Prices in an Evolving Product Line," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 1011-1025, September.
    11. Çömez-Dolgan, Nagihan & Moussawi-Haidar, Lama & Jaber, Mohamad Y. & Cephe, Ecem, 2022. "Capacitated assortment planning of a multi-location system under transshipments," International Journal of Production Economics, Elsevier, vol. 251(C).
    12. Çömez-Dolgan, Nagihan & Dağ, Hilal & Fescioglu-Unver, Nilgun & Şen, Alper, 2023. "Multi-plant manufacturing assortment planning in the presence of transshipments," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1033-1050.
    13. Hongmin Li & Scott Webster & Nicholas Mason & Karl Kempf, 2019. "Product-Line Pricing Under Discrete Mixed Multinomial Logit Demand," Service Science, INFORMS, vol. 21(1), pages 14-28, January.
    14. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    15. Pol Boada-Collado & Victor Martínez-de-Albéniz, 2020. "Estimating and Optimizing the Impact of Inventory on Consumer Choices in a Fashion Retail Setting," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 582-597, May.
    16. Felipe Caro & Victor Martínez-de-Albéniz & Paat Rusmevichientong, 2014. "The Assortment Packing Problem: Multiperiod Assortment Planning for Short-Lived Products," Management Science, INFORMS, vol. 60(11), pages 2701-2721, November.
    17. Mika Sumida & Guillermo Gallego & Paat Rusmevichientong & Huseyin Topaloglu & James Davis, 2021. "Revenue-Utility Tradeoff in Assortment Optimization Under the Multinomial Logit Model with Totally Unimodular Constraints," Management Science, INFORMS, vol. 67(5), pages 2845-2869, May.
    18. Ali Aouad & Vivek Farias & Retsef Levi, 2021. "Assortment Optimization Under Consider-Then-Choose Choice Models," Management Science, INFORMS, vol. 67(6), pages 3368-3386, June.
    19. Julia Heger & Robert Klein, 2024. "Assortment optimization: a systematic literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1099-1161, December.
    20. Chan, Rebecca & Li, Zhaolin & Matsypura, Dmytro, 2020. "Assortment optimisation problem: A distribution-free approach," Omega, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:62:y:2014:i:2:p:250-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.