IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v18y1972i9p518-528.html
   My bibliography  Save this item

Variance Minimization in Single Machine Sequencing Problems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
  2. V. Rajendra Prasad & D. K. Manna, 1997. "Minimization of expected variance of completion times on single machine for stochastic jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 97-108, February.
  3. Manna, D. K. & Prasad, V. Rajendra, 1999. "Bounds for the position of the smallest job in completion time variance minimization," European Journal of Operational Research, Elsevier, vol. 114(2), pages 411-419, April.
  4. Pereira, Jordi & Vásquez, Óscar C., 2017. "The single machine weighted mean squared deviation problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 515-529.
  5. Kubiak, Wieslaw & Cheng, Jinliang & Kovalyov, Mikhail Y., 2002. "Fast fully polynomial approximation schemes for minimizing completion time variance," European Journal of Operational Research, Elsevier, vol. 137(2), pages 303-309, March.
  6. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
  7. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
  8. Nessah, Rabia & Chu, Chengbin, 2010. "A lower bound for weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1221-1226, December.
  9. Wang, Ji-Bo & Xia, Zun-Quan, 2007. "Single machine scheduling problems with controllable processing times and total absolute differences penalties," European Journal of Operational Research, Elsevier, vol. 177(1), pages 638-645, February.
  10. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2000. "Sequencing jobs on a single machine: A neural network approach," European Journal of Operational Research, Elsevier, vol. 126(3), pages 474-490, November.
  11. Gowrishankar, K. & Rajendran, Chandrasekharan & Srinivasan, G., 2001. "Flow shop scheduling algorithms for minimizing the completion time variance and the sum of squares of completion time deviations from a common due date," European Journal of Operational Research, Elsevier, vol. 132(3), pages 643-665, August.
  12. J. Steve Davis & John J. Kanet, 1993. "Single‐machine scheduling with early and tardy completion costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 85-101, February.
  13. Gur Mosheiov, 2000. "Minimizing mean absolute deviation of job completion times from the mean completion time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(8), pages 657-668, December.
  14. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
  15. Nasini, Stefano & Nessah, Rabia, 2022. "A multi-machine scheduling solution for homogeneous processing: Asymptotic approximation and applications," International Journal of Production Economics, Elsevier, vol. 251(C).
  16. Srirangacharyulu, B. & Srinivasan, G., 2013. "An exact algorithm to minimize mean squared deviation of job completion times about a common due date," European Journal of Operational Research, Elsevier, vol. 231(3), pages 547-556.
  17. Nasini, Stefano & Nessah, Rabia, 2021. "An almost exact solution to the min completion time variance in a single machine," European Journal of Operational Research, Elsevier, vol. 294(2), pages 427-441.
  18. Ng, C. T. & Cai, X. & Cheng, T. C. E., 1996. "A tight lower bound for the completion time variance problem," European Journal of Operational Research, Elsevier, vol. 92(1), pages 211-213, July.
  19. Gajpal, Yuvraj & Rajendran, Chandrasekharan, 2006. "An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops," International Journal of Production Economics, Elsevier, vol. 101(2), pages 259-272, June.
  20. Michael C. Ferris & Milan Vlach, 1992. "Scheduling with earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 229-245, March.
  21. Cai, X., 1996. "V-shape property for job sequences that minimize the expected completion time variance," European Journal of Operational Research, Elsevier, vol. 91(1), pages 118-123, May.
  22. G Mosheiov, 2008. "Minimizing total absolute deviation of job completion times: extensions to position-dependent processing times and parallel identical machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1422-1424, October.
  23. Cheng, Jinliang & Kubiak, Wieslaw, 2005. "A half-product based approximation scheme for agreeably weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 162(1), pages 45-54, April.
  24. Koulamas, Christos & Kyparisis, George J., 2023. "Two-stage no-wait proportionate flow shop scheduling with minimal service time variation and optional job rejection," European Journal of Operational Research, Elsevier, vol. 305(2), pages 608-616.
  25. Nasini, Stefano & Nessah, Rabia, 2024. "Time-flexible min completion time variance in a single machine by quadratic programming," European Journal of Operational Research, Elsevier, vol. 312(2), pages 427-444.
  26. Uttarayan Bagchi & Yih‐Long Chang & Robert S. Sullivan, 1987. "Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 739-751, October.
  27. C.T. Ng & X. Cai & T.C.E. Cheng, 1999. "Probabilistic analysis of an asymptotically optimal solution for the completion time variance problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(4), pages 373-398, June.
  28. Weng, Xiaohua & Ventura, Jose A., 1996. "Scheduling about a given common due date to minimize mean squared deviation of completion times," European Journal of Operational Research, Elsevier, vol. 88(2), pages 328-335, January.
  29. Seo, Jong Hwa & Kim, Chae-Bogk & Lee, Dong Hoon, 2001. "Minimizing mean squared deviation of completion times with maximum tardiness constraint," European Journal of Operational Research, Elsevier, vol. 129(1), pages 95-104, February.
  30. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.