IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v312y2024i2p427-444.html
   My bibliography  Save this article

Time-flexible min completion time variance in a single machine by quadratic programming

Author

Listed:
  • Nasini, Stefano
  • Nessah, Rabia

Abstract

In the context of job scheduling, the time required to complete a task is related not only to the intrinsic difficulty of the task, but also to the operator’s willingness to speed up (or slow down) its execution. In fact, service operators are sometimes authorized to flexibly calibrate job processing times when this is beneficial for the efficient design of services and production plans. In this paper, we show that some forms of time flexibility have major consequences on the operator’s ability to efficiently solve the problem of scheduling non-preemptive jobs to minimize the variance of their completion times. In fact, although this remains a challenging combinatorial problem, authorizing forms of processing time flexibility allows for solving it up to optimality by convex quadratic programming approaches, with a view to tackling large-scale instances, where no exact algorithm can be applied. Our contribution allows establishing a form of least flexibilization of job processing times while guaranteeing the solvability of the resulting problem by convex quadratic programming approaches. To this end, we provide novel bounding conditions for the characterization of an optimal sequence that strengthen and integrate state-of-the-art dominance properties. Our numerical tests indicate that this new methodology is capable of approaching the solution of the original min completion time variance problem with a max relative difference of about 0.05% (on average), with respect to the time-flexible solution.

Suggested Citation

  • Nasini, Stefano & Nessah, Rabia, 2024. "Time-flexible min completion time variance in a single machine by quadratic programming," European Journal of Operational Research, Elsevier, vol. 312(2), pages 427-444.
  • Handle: RePEc:eee:ejores:v:312:y:2024:i:2:p:427-444
    DOI: 10.1016/j.ejor.2023.06.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723005015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.06.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nasini, Stefano & Nessah, Rabia, 2022. "A multi-machine scheduling solution for homogeneous processing: Asymptotic approximation and applications," International Journal of Production Economics, Elsevier, vol. 251(C).
    2. Alan G. Merten & Mervin E. Muller, 1972. "Variance Minimization in Single Machine Sequencing Problems," Management Science, INFORMS, vol. 18(9), pages 518-528, May.
    3. A. Federgruen & G. Mosheiov, 1996. "Heuristics for Multimachine Scheduling Problems with Earliness and Tardiness Costs," Management Science, INFORMS, vol. 42(11), pages 1544-1555, November.
    4. Daniel Baena & Jordi Castro & Antonio Frangioni, 2020. "Stabilized Benders Methods for Large-Scale Combinatorial Optimization, with Application to Data Privacy," Management Science, INFORMS, vol. 66(7), pages 3051-3068, July.
    5. Antonio Frangioni, 2005. "About Lagrangian Methods in Integer Optimization," Annals of Operations Research, Springer, vol. 139(1), pages 163-193, October.
    6. Samuel Eilon & I. G. Chowdhury, 1977. "Minimising Waiting Time Variance in the Single Machine Problem," Management Science, INFORMS, vol. 23(6), pages 567-575, February.
    7. Jordi Castro & Stefano Nasini & Francisco Saldanha-Da-Gama, 2017. "A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method," Post-Print hal-01745324, HAL.
    8. Kubiak, Wieslaw & Cheng, Jinliang & Kovalyov, Mikhail Y., 2002. "Fast fully polynomial approximation schemes for minimizing completion time variance," European Journal of Operational Research, Elsevier, vol. 137(2), pages 303-309, March.
    9. John J. Kanet, 1981. "Minimizing Variation of Flow Time in Single Machine Systems," Management Science, INFORMS, vol. 27(12), pages 1453-1459, December.
    10. Manna, D. K. & Prasad, V. Rajendra, 1999. "Bounds for the position of the smallest job in completion time variance minimization," European Journal of Operational Research, Elsevier, vol. 114(2), pages 411-419, April.
    11. Castro, Jordi & Nasini, Stefano, 2021. "A specialized interior-point algorithm for huge minimum convex cost flows in bipartite networks," European Journal of Operational Research, Elsevier, vol. 290(3), pages 857-869.
    12. Linus Schrage, 1975. "Minimizing the Time-in-System Variance for a Finite Jobset," Management Science, INFORMS, vol. 21(5), pages 540-543, January.
    13. Rabia Nessah & Chengbin Chu, 2008. "A Lower Bound for the Weighted Completion Time Variance Problem," Working Papers 2008-ECO-16, IESEG School of Management, revised May 2010.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nasini, Stefano & Nessah, Rabia, 2021. "An almost exact solution to the min completion time variance in a single machine," European Journal of Operational Research, Elsevier, vol. 294(2), pages 427-441.
    2. Nessah, Rabia & Chu, Chengbin, 2010. "A lower bound for weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1221-1226, December.
    3. Nasini, Stefano & Nessah, Rabia, 2022. "A multi-machine scheduling solution for homogeneous processing: Asymptotic approximation and applications," International Journal of Production Economics, Elsevier, vol. 251(C).
    4. Srirangacharyulu, B. & Srinivasan, G., 2013. "An exact algorithm to minimize mean squared deviation of job completion times about a common due date," European Journal of Operational Research, Elsevier, vol. 231(3), pages 547-556.
    5. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    6. Wang, Ji-Bo & Xia, Zun-Quan, 2007. "Single machine scheduling problems with controllable processing times and total absolute differences penalties," European Journal of Operational Research, Elsevier, vol. 177(1), pages 638-645, February.
    7. G Mosheiov, 2008. "Minimizing total absolute deviation of job completion times: extensions to position-dependent processing times and parallel identical machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1422-1424, October.
    8. Koulamas, Christos & Kyparisis, George J., 2023. "Two-stage no-wait proportionate flow shop scheduling with minimal service time variation and optional job rejection," European Journal of Operational Research, Elsevier, vol. 305(2), pages 608-616.
    9. Weng, Xiaohua & Ventura, Jose A., 1996. "Scheduling about a given common due date to minimize mean squared deviation of completion times," European Journal of Operational Research, Elsevier, vol. 88(2), pages 328-335, January.
    10. Kubiak, Wieslaw & Cheng, Jinliang & Kovalyov, Mikhail Y., 2002. "Fast fully polynomial approximation schemes for minimizing completion time variance," European Journal of Operational Research, Elsevier, vol. 137(2), pages 303-309, March.
    11. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    12. Ng, C. T. & Cai, X. & Cheng, T. C. E., 1996. "A tight lower bound for the completion time variance problem," European Journal of Operational Research, Elsevier, vol. 92(1), pages 211-213, July.
    13. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    14. Cai, X., 1996. "V-shape property for job sequences that minimize the expected completion time variance," European Journal of Operational Research, Elsevier, vol. 91(1), pages 118-123, May.
    15. C.T. Ng & X. Cai & T.C.E. Cheng, 1999. "Probabilistic analysis of an asymptotically optimal solution for the completion time variance problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(4), pages 373-398, June.
    16. J. Steve Davis & John J. Kanet, 1993. "Single‐machine scheduling with early and tardy completion costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 85-101, February.
    17. Gur Mosheiov, 2000. "Minimizing mean absolute deviation of job completion times from the mean completion time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(8), pages 657-668, December.
    18. Cheng, Jinliang & Kubiak, Wieslaw, 2005. "A half-product based approximation scheme for agreeably weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 162(1), pages 45-54, April.
    19. Seo, Jong Hwa & Kim, Chae-Bogk & Lee, Dong Hoon, 2001. "Minimizing mean squared deviation of completion times with maximum tardiness constraint," European Journal of Operational Research, Elsevier, vol. 129(1), pages 95-104, February.
    20. Manna, D. K. & Prasad, V. Rajendra, 1999. "Bounds for the position of the smallest job in completion time variance minimization," European Journal of Operational Research, Elsevier, vol. 114(2), pages 411-419, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:312:y:2024:i:2:p:427-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.