IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v101y2006i2p259-272.html
   My bibliography  Save this article

An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops

Author

Listed:
  • Gajpal, Yuvraj
  • Rajendran, Chandrasekharan

Abstract

No abstract is available for this item.

Suggested Citation

  • Gajpal, Yuvraj & Rajendran, Chandrasekharan, 2006. "An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops," International Journal of Production Economics, Elsevier, vol. 101(2), pages 259-272, June.
  • Handle: RePEc:eee:proeco:v:101:y:2006:i:2:p:259-272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(05)00032-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Johnny C., 1995. "Flowshop sequencing with mean flowtime objective," European Journal of Operational Research, Elsevier, vol. 81(3), pages 571-578, March.
    2. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    3. Uttarayan Bagchi & Robert S. Sullivan & Yih-Long Chang, 1987. "Minimizing Mean Squared Deviation of Completion Times About a Common Due Date," Management Science, INFORMS, vol. 33(7), pages 894-906, July.
    4. Alan G. Merten & Mervin E. Muller, 1972. "Variance Minimization in Single Machine Sequencing Problems," Management Science, INFORMS, vol. 18(9), pages 518-528, May.
    5. Gowrishankar, K. & Rajendran, Chandrasekharan & Srinivasan, G., 2001. "Flow shop scheduling algorithms for minimizing the completion time variance and the sum of squares of completion time deviations from a common due date," European Journal of Operational Research, Elsevier, vol. 132(3), pages 643-665, August.
    6. Herbert G. Campbell & Richard A. Dudek & Milton L. Smith, 1970. "A Heuristic Algorithm for the n Job, m Machine Sequencing Problem," Management Science, INFORMS, vol. 16(10), pages 630-637, June.
    7. Rajendran, Chandrasekharan, 1995. "Heuristics for scheduling in flowshop with multiple objectives," European Journal of Operational Research, Elsevier, vol. 82(3), pages 540-555, May.
    8. Chang, Pei-Chann & Hsieh, Jih-Chang & Lin, Shui-Geng, 2002. "The development of gradual-priority weighting approach for the multi-objective flowshop scheduling problem," International Journal of Production Economics, Elsevier, vol. 79(3), pages 171-183, October.
    9. Vina Vani & M. Raghavachari, 1987. "Deterministic and Random Single Machine Sequencing with Variance Minimization," Operations Research, INFORMS, vol. 35(1), pages 111-120, February.
    10. Allahverdi, Ali & Aldowaisan, Tariq, 2002. "New heuristics to minimize total completion time in m-machine flowshops," International Journal of Production Economics, Elsevier, vol. 77(1), pages 71-83, May.
    11. Liu, Jiyin & Reeves, Colin R, 2001. "Constructive and composite heuristic solutions to the P//[summation operator]Ci scheduling problem," European Journal of Operational Research, Elsevier, vol. 132(2), pages 439-452, July.
    12. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2002. "A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems," International Journal of Production Economics, Elsevier, vol. 79(3), pages 185-196, October.
    13. Samuel Eilon & I. G. Chowdhury, 1977. "Minimising Waiting Time Variance in the Single Machine Problem," Management Science, INFORMS, vol. 23(6), pages 567-575, February.
    14. Rajendran, Chandrasekharan, 1993. "Heuristic algorithm for scheduling in a flowshop to minimize total flowtime," International Journal of Production Economics, Elsevier, vol. 29(1), pages 65-73, February.
    15. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    16. Widmer, Marino & Hertz, Alain, 1989. "A new heuristic method for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 41(2), pages 186-193, July.
    17. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.
    18. Rajendran, Chandrasekharan & Ziegler, Hans, 2004. "Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 155(2), pages 426-438, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arshad Ali & Yuvraj Gajpal & Tarek Y. Elmekkawy, 2021. "Distributed permutation flowshop scheduling problem with total completion time objective," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 425-447, June.
    2. Sabuncuoglu, Ihsan & Erel, Erdal & Alp, Arda, 2009. "Ant colony optimization for the single model U-type assembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 287-300, August.
    3. Lin, B.M.T. & Lu, C.Y. & Shyu, S.J. & Tsai, C.Y., 2008. "Development of new features of ant colony optimization for flowshop scheduling," International Journal of Production Economics, Elsevier, vol. 112(2), pages 742-755, April.
    4. Luo, Hao & Yang, Xuan & Kong, Xiang T.R., 2019. "A synchronized production-warehouse management solution for reengineering the online-offline integrated order fulfillment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 211-230.
    5. V. Anjana & R. Sridharan & P. N. Ram Kumar, 2020. "Metaheuristics for solving a multi-objective flow shop scheduling problem with sequence-dependent setup times," Journal of Scheduling, Springer, vol. 23(1), pages 49-69, February.
    6. Huang, Rong-Hwa, 2010. "Multi-objective job-shop scheduling with lot-splitting production," International Journal of Production Economics, Elsevier, vol. 124(1), pages 206-213, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varadharajan, T.K. & Rajendran, Chandrasekharan, 2005. "A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 167(3), pages 772-795, December.
    2. Rajendran, Chandrasekharan & Ziegler, Hans, 2004. "Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 155(2), pages 426-438, June.
    3. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    4. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.
    5. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    6. K Sheibani, 2010. "A fuzzy greedy heuristic for permutation flow-shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 813-818, May.
    7. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    8. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    9. Li, Xiaoping & Wang, Qian & Wu, Cheng, 2009. "Efficient composite heuristics for total flowtime minimization in permutation flow shops," Omega, Elsevier, vol. 37(1), pages 155-164, February.
    10. Rajendran, Chandrasekharan & Ziegler, Hans, 2001. "A performance analysis of dispatching rules and a heuristic in static flowshops with missing operations of jobs," European Journal of Operational Research, Elsevier, vol. 131(3), pages 622-634, June.
    11. Framinan, Jose M. & Leisten, Rainer & Ruiz-Usano, Rafael, 2002. "Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation," European Journal of Operational Research, Elsevier, vol. 141(3), pages 559-569, September.
    12. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    13. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    14. Framinan, J. M. & Leisten, R., 2003. "An efficient constructive heuristic for flowtime minimisation in permutation flow shops," Omega, Elsevier, vol. 31(4), pages 311-317, August.
    15. Agarwal, Anurag & Colak, Selcuk & Eryarsoy, Enes, 2006. "Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach," European Journal of Operational Research, Elsevier, vol. 169(3), pages 801-815, March.
    16. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
    17. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    18. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
    19. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    20. Angel A. Juan & Helena Ramalhinho-Lourenço & Manuel Mateo & Quim Castellà & Barry B. Barrios, 2012. "ILS-ESP: An efficient, simple, and parameter-free algorithm for solving the permutation flow-shop problem," Economics Working Papers 1319, Department of Economics and Business, Universitat Pompeu Fabra.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:101:y:2006:i:2:p:259-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.