IDEAS home Printed from https://ideas.repec.org/r/gre/wpaper/2014-21.html
   My bibliography  Save this item

Rock around the Clock: An Agent-Based Model of Low- and High-Frequency Trading

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Christophe Charlier & Ankinée Kirakozian, 2020. "Public policies for household recycling when reputation matters," Journal of Evolutionary Economics, Springer, vol. 30(2), pages 523-557, April.
  2. Bougette, Patrice & Deschamps, Marc & Marty, Frédéric, 2015. "When Economics Met Antitrust: The Second Chicago School and the Economization of Antitrust Law," Enterprise & Society, Cambridge University Press, vol. 16(2), pages 313-353, June.
  3. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
  4. Maria Cristina Marcuzzo & Eleonora Sanfilippo, 2016. "Keynes and the interwar commodity option markets," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 40(1), pages 327-348.
  5. Zakaria Babutsidze & Maurizio Iacopetta, 2016. "Innovation, growth and financial markets," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 1-24, March.
  6. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
  7. Gianluca Piero Maria Virgilio, 2019. "High-frequency trading: a literature review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 183-208, June.
  8. Ma, Rong & Zhang, Yin & Li, Honggang, 2017. "Traders’ behavioral coupling and market phase transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 618-627.
  9. Nathalie Oriol & Iryna Veryzhenko, 2015. "Market structure or traders’ behavior? An assessment of flash crash phenomena and their regulation based on a multi-agent simulation," Working Papers halshs-01254435, HAL.
  10. Yoshimura, Yushi & Okuda, Hiroshi & Chen, Yu, 2020. "A mathematical formulation of order cancellation for the agent-based modelling of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
  11. Francesco Lamperti, 2016. "Empirical Validation of Simulated Models through the GSL-div: an Illustrative Application," LEM Papers Series 2016/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  12. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
  13. Leal, Sandrine Jacob & Napoletano, Mauro, 2019. "Market stability vs. market resilience: Regulatory policies experiments in an agent-based model with low- and high-frequency trading," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 15-41.
  14. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
  15. repec:spo:wpmain:info:hdl:2441/3utlh0ehcn860pus6p2p683ade is not listed on IDEAS
  16. repec:hal:spmain:info:hdl:2441/6ummnc8nko827b2luohnctekk7 is not listed on IDEAS
  17. Staccioli, Jacopo & Napoletano, Mauro, 2021. "An agent-based model of intra-day financial markets dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 331-348.
  18. Michiel Leur & Mikhail Anufriev, 2018. "Timing under individual evolutionary learning in a continuous double auction," Journal of Evolutionary Economics, Springer, vol. 28(3), pages 609-631, August.
  19. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
  20. Viktor Manahov, 2018. "The rise of the machines in commodities markets: new evidence obtained using Strongly Typed Genetic Programming," Annals of Operations Research, Springer, vol. 260(1), pages 321-352, January.
  21. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
  22. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
  23. Platt, Donovan & Gebbie, Tim, 2018. "Can agent-based models probe market microstructure?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1092-1106.
  24. Yi Zhang & Zhe Li & Yongchao Zhang, 2020. "Validation and Calibration of an Agent-Based Model: A Surrogate Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-9, January.
  25. Brogaard, Jonathan & Carrion, Allen & Moyaert, Thibaut & Riordan, Ryan & Shkilko, Andriy & Sokolov, Konstantin, 2018. "High frequency trading and extreme price movements," Journal of Financial Economics, Elsevier, vol. 128(2), pages 253-265.
  26. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
  27. Noemi Schmitt & Ivonne Schwartz & Frank Westerhoff, 2022. "Heterogeneous speculators and stock market dynamics: a simple agent-based computational model," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1263-1282, October.
  28. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  29. Iryna Veryzhenko & Lise Arena & Etienne Harb & Nathalie Oriol, 2017. "Time to Slow Down for High‐Frequency Trading? Lessons from Artificial Markets," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(2-3), pages 73-79, April.
  30. repec:spo:wpmain:info:hdl:2441/6ummnc8nko827b2luohnctekk7 is not listed on IDEAS
  31. Sandrine Jacob Leal & Mauro Napoletano, 2017. "Market Stability vs. Market Resilience: Regulatory Policies Experiments in an Agent-Based Model with Low- and High-Frequency Trading," Post-Print hal-01768876, HAL.
  32. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
  33. Birte Ewers & Jonathan F. Donges & Jobst Heitzig & Sonja Peterson, 2019. "Divestment may burst the carbon bubble if investors' beliefs tip to anticipating strong future climate policy," Papers 1902.07481, arXiv.org.
  34. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
  35. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
  36. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
  37. Gonçalves, Jorge & Kräussl, Roman & Levin, Vladimir, 2023. "Dark trading and financial markets stability," CFS Working Paper Series 691, Center for Financial Studies (CFS).
  38. Francesco Lamperti, 2015. "An Information Theoretic Criterion for Empirical Validation of Time Series Models," LEM Papers Series 2015/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  39. Gurdal Ertek & Aysha Al-Kaabi & Aktham Issa Maghyereh, 2022. "Analytical Modeling and Empirical Analysis of Binary Options Strategies," Future Internet, MDPI, vol. 14(7), pages 1-23, July.
  40. Thiago W. Alves & Ionut Florescu & George Calhoun & Dragos Bozdog, 2020. "SHIFT: A Highly Realistic Financial Market Simulation Platform," Papers 2002.11158, arXiv.org, revised Aug 2020.
  41. Steffen, Viktoria, 2023. "A literature review on extreme price movements with reversal," Journal of Behavioral and Experimental Finance, Elsevier, vol. 38(C).
  42. repec:hal:spmain:info:hdl:2441/3utlh0ehcn860pus6p2p683ade is not listed on IDEAS
  43. Dicks, Matthew & Paskaramoorthy, Andrew & Gebbie, Tim, 2024. "A simple learning agent interacting with an agent-based market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
  44. Paulin, James & Calinescu, Anisoara & Wooldridge, Michael, 2019. "Understanding flash crash contagion and systemic risk: A micro–macro agent-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 200-229.
  45. Donovan Platt & Tim Gebbie, 2016. "The Problem of Calibrating an Agent-Based Model of High-Frequency Trading," Papers 1606.01495, arXiv.org, revised Mar 2017.
  46. Wang, Chengjin & Gao, Yudong & Li, Honggang, 2021. "Information interaction, behavioral synchronization and asset market volatility," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
  47. Xiaotao Zhang & Jing Ping & Tao Zhu & Yuelei Li & Xiong Xiong, 2016. "Are Price Limits Effective? An Examination of an Artificial Stock Market," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-21, August.
  48. James Paulin & Anisoara Calinescu & Michael Wooldridge, 2018. "Understanding Flash Crash Contagion and Systemic Risk: A Micro-Macro Agent-Based Approach," Papers 1805.08454, arXiv.org.
  49. Erhan Bayraktar & Alexander Munk, 2017. "Mini-Flash Crashes, Model Risk, and Optimal Execution," Papers 1705.09827, arXiv.org, revised Aug 2018.
  50. Gonçalves, Jorge & Kräussl, Roman & Levin, Vladimir, 2019. "Do "speed bumps" prevent accidents in financial markets?," CFS Working Paper Series 636, Center for Financial Studies (CFS).
  51. Iryna Veryzhenko & Lise Arena, 2017. "A Reexamination of High Frequency Trading Regulation Effectiveness in an Artificial Market Framework," Post-Print halshs-01444738, HAL.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.