IDEAS home Printed from https://ideas.repec.org/r/gam/jeners/v8y2015i7p7243-7260d52695.html
   My bibliography  Save this item

Reinforcement Learning–Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  2. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
  3. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
  4. Huang, Ruchen & He, Hongwen & Su, Qicong & Härtl, Martin & Jaensch, Malte, 2024. "Enabling cross-type full-knowledge transferable energy management for hybrid electric vehicles via deep transfer reinforcement learning," Energy, Elsevier, vol. 305(C).
  5. Zhen Zhang & Cheng Ma & Rong Zhu, 2018. "Thermal and Energy Management Based on Bimodal Airflow-Temperature Sensing and Reinforcement Learning," Energies, MDPI, vol. 11(10), pages 1-14, September.
  6. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
  7. Elinor Ginzburg-Ganz & Itay Segev & Alexander Balabanov & Elior Segev & Sivan Kaully Naveh & Ram Machlev & Juri Belikov & Liran Katzir & Sarah Keren & Yoash Levron, 2024. "Reinforcement Learning Model-Based and Model-Free Paradigms for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions," Energies, MDPI, vol. 17(21), pages 1-54, October.
  8. Hongzhe Li & Jinsong Kang & Cheng Li, 2024. "Energy Management Strategy Based on Reinforcement Learning and Frequency Decoupling for Fuel Cell Hybrid Powertrain," Energies, MDPI, vol. 17(8), pages 1-21, April.
  9. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  10. Du, Guodong & Zou, Yuan & Zhang, Xudong & Guo, Lingxiong & Guo, Ningyuan, 2022. "Energy management for a hybrid electric vehicle based on prioritized deep reinforcement learning framework," Energy, Elsevier, vol. 241(C).
  11. Han, Xuefeng & He, Hongwen & Wu, Jingda & Peng, Jiankun & Li, Yuecheng, 2019. "Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 254(C).
  12. Zhou, Jianhao & Xue, Siwu & Xue, Yuan & Liao, Yuhui & Liu, Jun & Zhao, Wanzhong, 2021. "A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 224(C).
  13. Sun, Wenjing & Zou, Yuan & Zhang, Xudong & Guo, Ningyuan & Zhang, Bin & Du, Guodong, 2022. "High robustness energy management strategy of hybrid electric vehicle based on improved soft actor-critic deep reinforcement learning," Energy, Elsevier, vol. 258(C).
  14. Huijun Yue & Jinyu Lin & Peng Dong & Zhinan Chen & Xiangyang Xu, 2023. "Configurations and Control Strategies of Hybrid Powertrain Systems," Energies, MDPI, vol. 16(2), pages 1-18, January.
  15. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
  16. Mingliang Bai & Wenjiang Yang & Dongbin Song & Marek Kosuda & Stanislav Szabo & Pavol Lipovsky & Afshar Kasaei, 2020. "Research on Energy Management of Hybrid Unmanned Aerial Vehicles to Improve Energy-Saving and Emission Reduction Performance," IJERPH, MDPI, vol. 17(8), pages 1-24, April.
  17. Wu, Changcheng & Ruan, Jiageng & Cui, Hanghang & Zhang, Bin & Li, Tongyang & Zhang, Kaixuan, 2023. "The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid ," Energy, Elsevier, vol. 262(PB).
  18. Zou, Yuan & Liu, Teng & Liu, Dexing & Sun, Fengchun, 2016. "Reinforcement learning-based real-time energy management for a hybrid tracked vehicle," Applied Energy, Elsevier, vol. 171(C), pages 372-382.
  19. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  20. Xiaobin Ning & Jiazheng Wang & Yuming Yin & Jiarong Shangguan & Nanxin Bao & Ning Li, 2023. "Regenerative Braking Algorithm for Parallel Hydraulic Hybrid Vehicles Based on Fuzzy Q-Learning," Energies, MDPI, vol. 16(4), pages 1-18, February.
  21. Stefan Milićević & Ivan Blagojević & Saša Milojević & Milan Bukvić & Blaža Stojanović, 2024. "Numerical Analysis of Optimal Hybridization in Parallel Hybrid Electric Powertrains for Tracked Vehicles," Energies, MDPI, vol. 17(14), pages 1-19, July.
  22. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  23. Jau-Woei Perng & Yi-Horng Lai, 2016. "Robust Longitudinal Speed Control of Hybrid Electric Vehicles with a Two-Degree-of-Freedom Fuzzy Logic Controller," Energies, MDPI, vol. 9(4), pages 1-15, April.
  24. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  25. Wu, Jingda & He, Hongwen & Peng, Jiankun & Li, Yuecheng & Li, Zhanjiang, 2018. "Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus," Applied Energy, Elsevier, vol. 222(C), pages 799-811.
  26. Liu, Teng & Wang, Bo & Yang, Chenglang, 2018. "Online Markov Chain-based energy management for a hybrid tracked vehicle with speedy Q-learning," Energy, Elsevier, vol. 160(C), pages 544-555.
  27. Hong Huang & Li Zhai & Zeda Wang, 2018. "A Power Coupling System for Electric Tracked Vehicles during High-Speed Steering with Optimization-Based Torque Distribution Control," Energies, MDPI, vol. 11(6), pages 1-17, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.