IDEAS home Printed from https://ideas.repec.org/r/fth/mistet/8815.html
   My bibliography  Save this item

Prediction In Dynamic Models With Time Dependent Conditional Variances

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Madhusudan Karmakar, 2007. "Asymmetric Volatility and Risk-return Relationship in the Indian Stock Market," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 8(1), pages 99-116, January.
  2. Pierre Rostan & Alexandra Rostan, 2023. "The benefit of the Covid‐19 pandemic on global temperature projections," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2079-2098, December.
  3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
  4. Reeves, Jonathan J., 2005. "Bootstrap prediction intervals for ARCH models," International Journal of Forecasting, Elsevier, vol. 21(2), pages 237-248.
  5. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  6. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
  7. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
  8. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1998. "Real-Time Multivariate Density Forecast Evaluation and Calibration: Monitoring the Risk of High-Frequency Returns on Foreign Exchange," Center for Financial Institutions Working Papers 99-05, Wharton School Center for Financial Institutions, University of Pennsylvania.
  9. Palmitesta Paola & Provasi Corrado, 2004. "GARCH-type Models with Generalized Secant Hyperbolic Innovations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-19, May.
  10. Cornelis A. Los, 2005. "Measurement of Financial Risk Persistence," Finance 0502013, University Library of Munich, Germany.
  11. Tolis, Athanasios I. & Rentizelas, Athanasios A. & Tatsiopoulos, Ilias P., 2010. "Optimisation of electricity energy markets and assessment of CO2 trading on their structure: A stochastic analysis of the Greek Power Sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2529-2546, December.
  12. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
  13. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
  14. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
  15. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
  16. De Arce Borda, R., 2004. "20 años de modelos ARCH: una visión de conjunto de las distintas variantes de la familia/20 Years of Arch Modelling: a Survey of Different Models in the Family," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 22, pages 1-27, Abril.
  17. Linton, Oliver, 1997. "An Asymptotic Expansion in the GARCH(l, 1) Model," Econometric Theory, Cambridge University Press, vol. 13(4), pages 558-581, February.
  18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  19. Beste Hamiye Beyaztas & Ufuk Beyaztas & Soutir Bandyopadhyay & Wei-Min Huang, 2018. "New and Fast Block Bootstrap-Based Prediction Intervals for GARCH(1,1) Process with Application to Exchange Rates," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 168-194, February.
  20. Òscar Jordà & Massimiliano Marcellino, 2010. "Path forecast evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 635-662.
  21. Taylor, James W. & Jeon, Jooyoung, 2018. "Probabilistic forecasting of wave height for offshore wind turbine maintenance," European Journal of Operational Research, Elsevier, vol. 267(3), pages 877-890.
  22. Reza Hadizadeh & Amir Abbas Shojaie, 2017. "A Measure of SCM Bullwhip Effect Under Mixed Autoregressive-Moving Average with Errors Heteroscedasticity (ARMA(1,1)–GARCH(1,1)) Model," Annals of Data Science, Springer, vol. 4(1), pages 83-104, March.
  23. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
  24. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  25. Yoann Potiron & Per Mykland, 2020. "Local Parametric Estimation in High Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 679-692, July.
  26. Wenwen Zhang, 2022. "Stock Market Co-movements in RCEP Participating Countries," Economics Bulletin, AccessEcon, vol. 42(2), pages 1180-1191.
  27. Szabolcs Blazsek & Anna Downarowicz, 2013. "Forecasting hedge fund volatility: a Markov regime-switching approach," The European Journal of Finance, Taylor & Francis Journals, vol. 19(4), pages 243-275, April.
  28. Myers, Robert J. & Hanson, Steven D., 1991. "Pricing Commodity Options When The Underlying Futures Price Exhibits Time-Varying Volatility," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271194, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  29. Bali, Turan G., 2008. "The intertemporal relation between expected returns and risk," Journal of Financial Economics, Elsevier, vol. 87(1), pages 101-131, January.
  30. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
  31. Lahiri, Kajal & Liu, Fushang, 2005. "ARCH models for multi-period forecast uncertainty-a reality check using a panel of density forecasts," MPRA Paper 21693, University Library of Munich, Germany.
  32. Laura Mun Oz & Pilar Olave & Manuel Salvador, 2002. "Variations in returns/volatility and persistence in variance. An application to the Spanish stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 9(13), pages 899-905.
  33. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
  34. Chunyang Zhou & Xiao Qin & Xundi Diao & Yingchen He, 2016. "Estimating multi-period Value at Risk of oil futures prices," Applied Economics, Taylor & Francis Journals, vol. 48(32), pages 2994-3004, July.
  35. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Forecasting of Options Prices: A Natural Framework for Pooling Historical and Implied Volatiltiy Information," Cambridge Working Papers in Economics 0116, Faculty of Economics, University of Cambridge.
  36. Bauwens Luc & Storti Giuseppe, 2009. "A Component GARCH Model with Time Varying Weights," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-33, May.
  37. Ufuk Beyaztas & Beste H. Beyaztas, 2019. "On Jackknife-After-Bootstrap Method for Dependent Data," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1613-1632, April.
  38. Adam Misiorek & Rafal Weron, 2006. "Interval forecasting of spot electricity prices," HSC Research Reports HSC/06/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  39. George M. Constantinides & Michal Czerwonko & Jens Carsten Jackwerth & Stylianos Perrakis, 2011. "Are Options on Index Futures Profitable for Risk‐Averse Investors? Empirical Evidence," Journal of Finance, American Finance Association, vol. 66(4), pages 1407-1437, August.
  40. Robert F. Stambaugh, "undated". "Estimating Conditional Expectations When Volatility Fluctuates," Rodney L. White Center for Financial Research Working Papers 17-93, Wharton School Rodney L. White Center for Financial Research.
  41. Hlouskova, Jaroslava & Schmidheiny, Kurt & Wagner, Martin, 2009. "Multistep predictions for multivariate GARCH models: Closed form solution and the value for portfolio management," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 330-336, March.
  42. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
  43. Jaroslava Hlouskova & Kurt Schmidheiny & Martin Wagner, 2002. "Multistep Predictions from Multivariate ARMA-GARCH: Models and their Value for Portfolio Management," Diskussionsschriften dp0212, Universitaet Bern, Departement Volkswirtschaft.
  44. Pierre Rostan & Alexandra Rostan & John Wall, 2024. "Measuring the Resilience to the Covid-19 Pandemic of Eurozone Economies with Their 2050 Forecasts," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1137-1157, March.
  45. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
  46. Canova, Fabio & Marrinan, Jane, 1996. "Reconciling the term structure of interest rates with the consumption-based ICAP model," Journal of Economic Dynamics and Control, Elsevier, vol. 20(4), pages 709-750, April.
  47. repec:rri:wpaper:200501 is not listed on IDEAS
  48. Jesús Miguel & Pilar Olave, 1999. "Bootstrapping forecast intervals in ARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 345-364, December.
  49. Peter Christoffersen & Silvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
  50. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  51. Ane, Thierry & Labidi, Chiraz, 2006. "Spillover effects and conditional dependence," International Review of Economics & Finance, Elsevier, vol. 15(4), pages 417-442.
  52. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
  53. Kajal Lahiri & Fushang Liu, 2006. "ARCH Models for Multi-period Forecast Uncertainty: A Reality Check Using a Panel of Density Forecasts," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 321-363, Emerald Group Publishing Limited.
  54. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
  55. Ahmed A. A. Khalifa & Hong Miao & Sanjay Ramchander, 2011. "Return distributions and volatility forecasting in metal futures markets: Evidence from gold, silver, and copper," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(1), pages 55-80, January.
  56. Wai Yan Cheng & Michael Chak Sham Wong & Clement Yuk Pang Wong, 2003. "Market risk management of banks: implications from the accuracy of Value-at-Risk forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 23-33.
  57. Su, Jung-Bin & Lee, Ming-Chih & Chiu, Chien-Liang, 2014. "Why does skewness and the fat-tail effect influence value-at-risk estimates? Evidence from alternative capital markets," International Review of Economics & Finance, Elsevier, vol. 31(C), pages 59-85.
  58. Storti, G., 2006. "Minimum distance estimation of GARCH(1,1) models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1803-1821, December.
  59. Christian Dunis & Jason Laws & Stephane Chauvin, 2003. "FX volatility forecasts and the informational content of market data for volatility," The European Journal of Finance, Taylor & Francis Journals, vol. 9(3), pages 242-272.
  60. Amir Safari & Detlef Seese, 2010. "Behavior of realized volatility and correlation in exchange markets," International Econometric Review (IER), Econometric Research Association, vol. 2(2), pages 73-96, September.
  61. Michael P. Clements & Ana Beatriz Galvão, 2014. "Measuring Macroeconomic Uncertainty: US Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-04, Henley Business School, University of Reading.
  62. Tolis, Athanasios I. & Rentizelas, Athanasios A. & Tatsiopoulos, Ilias P., 2010. "Time-dependent opportunities in energy business: A comparative study of locally available renewable and conventional fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 384-393, January.
  63. Abadir, Karim M. & Luati, Alessandra & Paruolo, Paolo, 2023. "GARCH density and functional forecasts," Journal of Econometrics, Elsevier, vol. 235(2), pages 470-483.
  64. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
  65. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
  66. Tim Bollerslev & Eric Ghysels, 1994. "On Periodic Autogressive Conditional Heteroskedasticity," CIRANO Working Papers 94s-03, CIRANO.
  67. Anthony J. Lawrance, 2010. "Volatile ARMA Modelling of GARCH Squares," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(3), pages 195-203, June.
  68. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
  69. Rostan, Pierre & Rostan, Alexandra, 2018. "Forecasting Spanish GDPs with Spectral Analysis /Previsiones del PIB español con análisis espectral," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 217-234, Enero.
  70. Zhang, Xiaolong, 2007. "Inventory control under temporal demand heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 182(1), pages 127-144, October.
  71. Brian H. Boyer & Michael S. Gibson, 1997. "Evaluating forecasts of correlation using option pricing," International Finance Discussion Papers 600, Board of Governors of the Federal Reserve System (U.S.).
  72. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  73. Michael P. Clements & Nick Taylor, 2003. "Evaluating interval forecasts of high-frequency financial data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 445-456.
  74. Brian O'Reilly, 1998. "The Benefits of Low Inflation: Taking Shock "A nickel ain't worth a dime any more" [Yogi Berra]," Technical Reports 83, Bank of Canada.
  75. Ahmed BenSaïda, 2021. "The Good and Bad Volatility: A New Class of Asymmetric Heteroskedastic Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(2), pages 540-570, April.
  76. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
  77. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
  78. Khalifa, Ahmed & Caporin, Massimiliano & Hammoudeh, Shawkat, 2015. "Spillovers between energy and FX markets: The importance of asymmetry, uncertainty and business cycle," Energy Policy, Elsevier, vol. 87(C), pages 72-82.
  79. Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
  80. Tao Hong & Katarzyna Maciejowska & Jakub Nowotarski & Rafal Weron, 2014. "Probabilistic load forecasting via Quantile Regression Averaging of independent expert forecasts," HSC Research Reports HSC/14/10, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  81. Radu Lupu & Iulia Lupu, 2007. "Testing for Heteroskedasticity on the Bucharest Stock Exchange," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 10(23), pages 19-28, June.
  82. Pascual, Lorenzo, 2000. "Forecasting returns and volatilities in GARCH processes using the bootstrap," DES - Working Papers. Statistics and Econometrics. WS 10059, Universidad Carlos III de Madrid. Departamento de Estadística.
  83. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
  84. Arnold Polanski & Evarist Stoja, 2010. "Incorporating higher moments into value-at-risk forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 523-535.
  85. Christodoulakis, George A., 2007. "Common volatility and correlation clustering in asset returns," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1263-1284, November.
  86. Peter A. Zadrozny, 2005. "Necessary and Sufficient Restrictions for Existence of a Unique Fourth Moment of a Univariate GARCH(p,q) Process," CESifo Working Paper Series 1505, CESifo.
  87. Allan Crawford & Marcel Kasumovich, 1996. "Does Inflation Uncertainty Vary with the Level of Inflation?," Staff Working Papers 96-09, Bank of Canada.
  88. Walter Labys, 2005. "Commodity Price Fluctuations: A Century of Analysis," Working Papers Working Paper 2005-01, Regional Research Institute, West Virginia University.
  89. Ulu, Yasemin, 2007. "Optimal prediction under LINLIN loss: Empirical evidence," International Journal of Forecasting, Elsevier, vol. 23(4), pages 707-715.
  90. H. Youn Kim & José Alberto Molina & Ka Kei Gary Wong, 2022. "Durable Goods and Consumer Behavior with Liquidity Constraints: Evidence from Norway," Boston College Working Papers in Economics 1047, Boston College Department of Economics.
  91. RUGE-MURCIA, Francisco J., 2002. "Some Implications of the Zero Lower Bound on Interest Rates for the Term Structure and Monetary Policy," Cahiers de recherche 2002-06, Universite de Montreal, Departement de sciences economiques.
  92. Shimizu Kenichi, 2013. "The bootstrap does not alwayswork for heteroscedasticmodels," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 189-204, August.
  93. Cabedo Semper, J. David & Moya Clemente, Ismael, 2003. "Value at risk calculation through ARCH factor methodology: Proposal and comparative analysis," European Journal of Operational Research, Elsevier, vol. 150(3), pages 516-528, November.
  94. Singh, Ranjodh B. & Gould, John & Chan, Felix & Yang, Joey Wenling, 2016. "Liquidation discount—a novel application of ARFIMA–GARCH," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 151-161.
  95. Su, Jung-Bin & Hung, Jui-Cheng, 2011. "Empirical analysis of jump dynamics, heavy-tails and skewness on value-at-risk estimation," Economic Modelling, Elsevier, vol. 28(3), pages 1117-1130, May.
  96. Menelaos Karanasos & J. Kim, "undated". "Alternative GARCH in Mean Models: An Application to the Korean Stock Market," Discussion Papers 00/25, Department of Economics, University of York.
  97. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
  98. Alexander Tsyplakov, 2006. "Introduction to prediction in classical time series models (in Russian)," Quantile, Quantile, issue 1, pages 3-19, September.
  99. Tolis, Athanasios & Doukelis, Aggelos & Tatsiopoulos, Ilias, 2010. "Stochastic interest rates in the analysis of energy investments: Implications on economic performance and sustainability," Applied Energy, Elsevier, vol. 87(8), pages 2479-2490, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.