IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v31y2014icp59-85.html
   My bibliography  Save this article

Why does skewness and the fat-tail effect influence value-at-risk estimates? Evidence from alternative capital markets

Author

Listed:
  • Su, Jung-Bin
  • Lee, Ming-Chih
  • Chiu, Chien-Liang

Abstract

In this study, the generalized autoregressive conditional heteroskedasticity (GARCH) model involving skewed generalized error distribution (SGED) was used to estimate the corresponding volatility and value-at-risk (VaR) measures for various commodities distributed across four types of commodity markets. The empirical results indicated that the return (volatility) of most of the assets distributed in alternative markets significantly decreased (increased) as a result of the global financial crisis. Conversely, the oil crisis yielded inconsistent results. Regarding the influences of both crises on return and volatility, the global financial crisis was more influential than the oil crisis was. Moreover, regarding confidence levels, the skewness effect existed among VaR estimations for only the long position, whereas the fat-tail effect existed among the VaR estimations for only high confidence levels, irrespective of whether a long or short position was traded. Finally, regarding the popular confidence levels in risk management, the SGED (GED) was the optimal return distribution setting for a long (short) position.

Suggested Citation

  • Su, Jung-Bin & Lee, Ming-Chih & Chiu, Chien-Liang, 2014. "Why does skewness and the fat-tail effect influence value-at-risk estimates? Evidence from alternative capital markets," International Review of Economics & Finance, Elsevier, vol. 31(C), pages 59-85.
  • Handle: RePEc:eee:reveco:v:31:y:2014:i:c:p:59-85
    DOI: 10.1016/j.iref.2013.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056013001342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2013.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. So, Mike K.P. & Yu, Philip L.H., 2006. "Empirical analysis of GARCH models in value at risk estimation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(2), pages 180-197, April.
    2. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    3. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    4. McAleer, Michael & Jimenez-Martin, Juan-Angel & Perez-Amaral, Teodosio, 2013. "GFC-robust risk management strategies under the Basel Accord," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 97-111.
    5. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    6. Ender Su & Thomas W. Knowles, 2006. "Asian Pacific Stock Market Volatility Modeling and Value at Risk Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 42(2), pages 18-62, April.
    7. Michel Beine & Sébastien Laurent & Christelle Lecourt, 2002. "Accounting for conditional leptokurtosis and closing days effects in FIGARCH models of daily exchange rates," ULB Institutional Repository 2013/10443, ULB -- Universite Libre de Bruxelles.
    8. Baillie, Richard T. & Bollerslev, Tim, 1992. "Prediction in dynamic models with time-dependent conditional variances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 91-113.
    9. Liu, Hung-Chun & Chiang, Shu-Mei & Cheng, Nick Ying-Pin, 2012. "Forecasting the volatility of S&P depositary receipts using GARCH-type models under intraday range-based and return-based proxy measures," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 78-91.
    10. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    13. Yu Chuan Huang & Bor-Jing Lin, 2004. "Value-at-Risk Analysis for Taiwan Stock Index Futures: Fat Tails and Conditional Asymmetries in Return Innovations," Review of Quantitative Finance and Accounting, Springer, vol. 22(2), pages 79-95, March.
    14. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    15. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    16. Fabio Bellini & Gianna Figa-talamanca, 2007. "Conditional tail behaviour and Value at Risk," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 599-607.
    17. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    18. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    19. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    20. Ewing, Bradley T. & Malik, Farooq, 2013. "Volatility transmission between gold and oil futures under structural breaks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 113-121.
    21. Chen, Fen-Ying & Liao, Szu-Lang, 2009. "Modelling VaR for foreign-asset portfolios in continuous time," Economic Modelling, Elsevier, vol. 26(1), pages 234-240, January.
    22. Leeves, Gareth, 2007. "Asymmetric volatility of stock returns during the Asian crisis: Evidence from Indonesia," International Review of Economics & Finance, Elsevier, vol. 16(2), pages 272-286.
    23. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Cathy Yi-Hsuan & Kuo, I-Doun, 2015. "Survey sentiment and interest rate option smile," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 125-137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Jung-Bin & Hung, Jui-Cheng, 2011. "Empirical analysis of jump dynamics, heavy-tails and skewness on value-at-risk estimation," Economic Modelling, Elsevier, vol. 28(3), pages 1117-1130, May.
    2. Cheng-Few Lee & Jung-Bin Su, 2012. "Alternative statistical distributions for estimating value-at-risk: theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 309-331, October.
    3. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Su, Jung-Bin, 2015. "Value-at-risk estimates of the stock indices in developed and emerging markets including the spillover effects of currency market," Economic Modelling, Elsevier, vol. 46(C), pages 204-224.
    5. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    6. Su, Jung-Bin, 2014. "Empirical analysis of long memory, leverage, and distribution effects for stock market risk estimates," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 1-39.
    7. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    8. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    9. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    10. Maghyereh Aktham Issa & Awartani Basel, 2012. "Modeling and Forecasting Value-at-Risk in the UAE Stock Markets: The Role of Long Memory, Fat Tails and Asymmetries in Return Innovations," Review of Middle East Economics and Finance, De Gruyter, vol. 8(1), pages 1-22, August.
    11. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    13. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    14. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    15. Paul Bui Quang & Tony Klein & Nam H. Nguyen & Thomas Walther, 2018. "Value-at-Risk for South-East Asian Stock Markets: Stochastic Volatility vs. GARCH," JRFM, MDPI, vol. 11(2), pages 1-20, April.
    16. Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
    17. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    18. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    19. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    20. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.

    More about this item

    Keywords

    Value-at-Risk; GARCH models; Skewness effect; Fat-tail effect; Global financial crisis;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:31:y:2014:i:c:p:59-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.