IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0140.html
   My bibliography  Save this paper

Estimating Conditional Expectations when Volatility Fluctuates

Author

Listed:
  • Robert F. Stambaugh

Abstract

Asymptotic variance of estimated parameters in models of conditional expectations are calculated analytically assuming a GARCH process for conditional volatility. Under such heteroskedasticity, OLS estimators or parameters in single-period models can posses substantially larger asymptotic variances the GMM estimators employing additional multiperiod moment conditions - an approach yielding no efficiency gain under homoskedasticity. In estimating models of long- horizon expectations, the VAR approach provides an efficiency advantage over long-horizon regressions under homoskedasticity, but that ordering can reverse under heteroskedasticity, especially when the conditional mean and variance are both persistent. In such cases, the VAR approach maintains a slight efficiency advantage if the OLS estimator is replaced by an alternative GMM estimator. Heteroskedasticity can increase dramatically the apparent asymptotic power advantages of long-horizon regressions to reject constant expectations against persistent alternatives.

Suggested Citation

  • Robert F. Stambaugh, 1993. "Estimating Conditional Expectations when Volatility Fluctuates," NBER Technical Working Papers 0140, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0140
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0140.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    3. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    4. Richardson, Matthew & Smith, Tom, 1991. "Tests of Financial Models in the Presence of Overlapping Observations," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 227-254.
    5. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    8. Hansen, Lars Peter & Singleton, Kenneth J, 1996. "Efficient Estimation of Linear Asset-Pricing Models with Moving Average Errors," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 53-68, January.
    9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    10. Geweke, John, 1981. "The Approximate Slopes of Econometric Tests," Econometrica, Econometric Society, vol. 49(6), pages 1427-1442, November.
    11. Baillie, Richard T. & Bollerslev, Tim, 1992. "Prediction in dynamic models with time-dependent conditional variances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 91-113.
    12. Mishkin, Frederic S., 1990. "Does correcting for heteroscedasticity help?," Economics Letters, Elsevier, vol. 34(4), pages 351-356, December.
    13. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    14. Cragg, John G, 1983. "More Efficient Estimation in the Presence of Heteroscedasticity of Unknown Form," Econometrica, Econometric Society, vol. 51(3), pages 751-763, May.
    15. Shmuel Kandel & Robert F. Stambaugh, "undated". "Modeling Expected Stock Returns for Long and Short Horizons," Rodney L. White Center for Financial Research Working Papers 42-88, Wharton School Rodney L. White Center for Financial Research.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    2. Stanislav Anatolyev, 2007. "Optimal Instruments In Time Series: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 143-173, February.
    3. Paul Harrison & Harold H. Zhang, "undated". "Cyclical Variation in the Risk and Return Relation," Computing in Economics and Finance 1997 175, Society for Computational Economics.
    4. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    5. James D. Hamilton, 2008. "Macroeconomics and ARCH," NBER Working Papers 14151, National Bureau of Economic Research, Inc.
    6. Jacob Boudoukh & Matthew Richardson & Robert F. Whitelaw, 2008. "The Myth of Long-Horizon Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1577-1605, July.
    7. Jacob Boudoukh & Matthew Richardson & Robert Whitelaw, 2005. "The Myth of Long-Horizon Predictability," NBER Working Papers 11841, National Bureau of Economic Research, Inc.
    8. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    9. Jacob Boudouk & Matthew Richardson, 1994. "The Statistics Of Long‐Horizon Regressions Revisited1," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 103-119, April.
    10. Edmonds, Radcliffe Jr. & So, Jacky Y. C., 2004. "Is exchange rate volatility excessive? An ARCH and AR approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 122-154, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
    2. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    3. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    4. Campbell, John Y & Ammer, John, 1993. "What Moves the Stock and Bond Markets? A Variance Decomposition for Long-Term Asset Returns," Journal of Finance, American Finance Association, vol. 48(1), pages 3-37, March.
    5. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    6. Maio, Paulo & Santa-Clara, Pedro, 2012. "Multifactor models and their consistency with the ICAPM," Journal of Financial Economics, Elsevier, vol. 106(3), pages 586-613.
    7. Sadorsky, Perry, 2002. "Time-varying risk premiums in petroleum futures prices," Energy Economics, Elsevier, vol. 24(6), pages 539-556, November.
    8. Bali, Turan G., 2008. "The intertemporal relation between expected returns and risk," Journal of Financial Economics, Elsevier, vol. 87(1), pages 101-131, January.
    9. Bruno Solnik, 1991. "Finance Theory and Investment Management," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 127(III), pages 303-324, September.
    10. Ferson, Wayne E & Korajczyk, Robert A, 1995. "Do Arbitrage Pricing Models Explain the Predictability of Stock Returns?," The Journal of Business, University of Chicago Press, vol. 68(3), pages 309-349, July.
    11. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    12. Maio, Paulo, 2013. "Return decomposition and the Intertemporal CAPM," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4958-4972.
    13. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    14. Qureshi, Fiza & Khan, Habib Hussain & Rehman, Ijaz Ur & Ghafoor, Abdul & Qureshi, Saba, 2019. "Mutual fund flows and investors’ expectations in BRICS economies: Implications for international diversification," Economic Systems, Elsevier, vol. 43(1), pages 130-150.
    15. Chen, Yong & Da, Zhi & Huang, Dayong, 2022. "Short selling efficiency," Journal of Financial Economics, Elsevier, vol. 145(2), pages 387-408.
    16. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    17. Kenneth West & Ka-fu Wong & Stanislav Anatolyev, 2009. "Instrumental Variables Estimation of Heteroskedastic Linear Models Using All Lags of Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 441-467.
    18. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    19. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    20. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.